OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 3241–3249

Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 3241-3249 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1125 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Many information processing challenges are difficult to solve with traditional Turing or von Neumann approaches. Implementing unconventional computational methods is therefore essential and optics provides promising opportunities. Here we experimentally demonstrate optical information processing using a nonlinear optoelectronic oscillator subject to delayed feedback. We implement a neuro-inspired concept, called Reservoir Computing, proven to possess universal computational capabilities. We particularly exploit the transient response of a complex dynamical system to an input data stream. We employ spoken digit recognition and time series prediction tasks as benchmarks, achieving competitive processing figures of merit.

© 2012 OSA

OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(200.3050) Optics in computing : Information processing
(250.4745) Optoelectronics : Optical processing devices

ToC Category:
Optics in Computing

Original Manuscript: October 24, 2011
Revised Manuscript: January 13, 2012
Manuscript Accepted: January 16, 2012
Published: January 27, 2012

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer, "Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing," Opt. Express 20, 3241-3249 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B. Miller, M. H. Mozolowski, A. Miller, and S. D. Smith, “Nonlinear optical effects in insb with a cw co laser,” Opt. Commun.27, 133–136 (1978). [CrossRef]
  2. E. Abraham and S. D. Smith, “Optical bistability and related devices,” Rep. Prog. Phys.45, 815–885 (1982). [CrossRef]
  3. J. L. O’Brien, “Optical quantum computing,” Science7, 1567–1570 (2007). [CrossRef]
  4. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics4, 261 (2010). [CrossRef]
  5. R. S. Tucker, “The role of optics in computing,” Nat. Photonics4, 405 (2010). [CrossRef]
  6. D. A. B. Miller, “Correspondence to the editor,” Nat. Photonics4, 406 (2010). [CrossRef]
  7. H. Jaeger and H. Haas, “Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication,” Science304, 78–80 (2004). [CrossRef] [PubMed]
  8. D. V. Buonomano and W. Maass, “State-dependent computations: Spatiotemporal processing in cortical networks,” Nat. Rev. Neurosci.10, 113–125 (2009). [CrossRef] [PubMed]
  9. J. P. Crutchfield, L. D. William, and S. Sudeshna, “Introduction to focus issue: Intrinsic and designed computation: Information processing in dynamical systems beyond the digital hegemony,” Chaos20, 037101 (2010). [CrossRef] [PubMed]
  10. L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun.2, 468 (2011). [CrossRef] [PubMed]
  11. M. Rabinovich, R. Huerta, and G. Laurent, “Transient dynamics of neural processing,” Science321, 48–50 (2008). [CrossRef] [PubMed]
  12. K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P. Bienstman, and J. Campenhout, “Toward optical signal processing using photonic reservoir computing,” Opt. Express16, 11182–11192 (2008). [CrossRef] [PubMed]
  13. K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE Trans. Neural Netw.22, 1469–1481 (2011). [CrossRef] [PubMed]
  14. A. Neyer and E. Voges, “Dynamics of electrooptic bistable devices with delayed feedback,” IEEE J. Quantum Electron.18, 2009–2015 (1982). [CrossRef]
  15. L. Larger, J.-P. Goedgebuer, and V. S. Udaltsov, “Ikeda–based nonlinear delayed dynamics for application to secure optical transmission systems using chaos,” C. R. Phys.5, 669–681 (2004). [CrossRef]
  16. K. E. Callan, L. Illing, Z. Gao, D. J. Gauthier, and E. Schöll, “Broadband chaos generated by an optoelectronic oscillator,” Phys. Rev. Lett.104, 113901 (2010). [CrossRef] [PubMed]
  17. K. Ikeda, “Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system,” Opt. Commun.30, 257–261 (1979). [CrossRef]
  18. L. Larger and J. M. Dudley, “Optoelectronic chaos,” Nature465, 41–42 (2010). [CrossRef] [PubMed]
  19. T. Erneux, L. Larger, M. W. Lee, and J. Goedgebuer, “Ikeda hopf bifurcation revisited,” Physica D194, 49–64 (2004). [CrossRef]
  20. F. T. Arecchi, G. Giacomelli, A. Lapucci, and R. Meucci, “Two–dimensional representation of a delayed dynamical system,” Phys. Rev. A45, R4225–R4228 (1993). [CrossRef]
  21. D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. Van Campenhout, “Isolated word recognition with the liquid state machine: a case study,” Inf. Process. Lett.30, 521–528 (2005). [CrossRef]
  22. R. F. Lyon, “A computational model of filtering, detection, and compression in the cochlea,” Proc. of the IEEE Int. Conf. Acoust., Speech, Signal Processing (1982).
  23. A. E. Hoerl and R. W. Kennard, “Ridge Regression: Applications to Nonorthogonal Problems” Technometrics12, 69–82 (1970). [CrossRef]
  24. A. S. Weigend and N. A. Gershenfeld, “Time series prediction: Forecasting the future and understanding the past,” ftp://ftp.santafe.edu/pub/Time-Series/Competition (1993).
  25. A. Rodan and P. Tino, “Minimum complexity echo state network,” IEEE Trans. Neural Netw.22, 131–144 (2011). [CrossRef]
  26. L. J. Cao, “Support vector machines experts for time series forecasting,” Neurocomputing51, 321–339 (2003). [CrossRef]
  27. D. Psaltis, D. Brady, X. G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature343, 325–330 (1990). [CrossRef] [PubMed]
  28. Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, “Optoelectronic Reservoir Computing,” http://arxiv.org/abs/1111.7219

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited