OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3367–3374

An integrated microparticle sorting system based on near-field optical forces and a structural perturbation

Shiyun Lin and Kenneth B. Crozier  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 3367-3374 (2012)
http://dx.doi.org/10.1364/OE.20.003367


View Full Text Article

Enhanced HTML    Acrobat PDF (1085 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an integrated microparticle passive sorting system based on the near-field optical forces exerted by a 3-dB optical splitter that consists of a slot waveguide and a conventional channel waveguide. We show that 320 nm and 2 µm polystyrene particles brought into the splitter are sorted so that they exit along the slot waveguide and channel waveguide, respectively. Electromagnetic simulations and precise position tracking experiments are carried out to investigate the sorting mechanism. As the waveguides are separated by 200 nm, they provide two potential wells for the smaller particles, but only one broad potential well for the larger particles, since their diameters exceed the distance between the two field maxima. A structural perturbation consisting of a stuck bead transfers the smaller particles to the second well associated with the slot waveguide, while the larger particles are brought to the region between the two waveguides and eventually follow the channel waveguide, as it is associated with a deeper potential well. This label-free passive particle sorting system requires low guided power (20 mW in these experiments), and provides a new technique for sorting sub-micron particles.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: October 3, 2011
Revised Manuscript: November 27, 2011
Manuscript Accepted: November 27, 2011
Published: January 30, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Shiyun Lin and Kenneth B. Crozier, "An integrated microparticle sorting system based on near-field optical forces and a structural perturbation," Opt. Express 20, 3367-3374 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-3367


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. A. Bonner, H. R. Hulett, R. G. Sweet, and L. A. Herzenberg, “Fluorescence activated cell sorting,” Rev. Sci. Instrum.43(3), 404–409 (1972). [CrossRef] [PubMed]
  2. A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol.17(11), 1109–1111 (1999). [CrossRef] [PubMed]
  3. S. Fiedler, S. G. Shirley, T. Schnelle, and G. Fuhr, “Dielectrophoretic sorting of particles and cells in a microsystem,” Anal. Chem.70(9), 1909–1915 (1998). [CrossRef] [PubMed]
  4. A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip3(1), 22–27 (2003). [CrossRef] [PubMed]
  5. S. Lin, J. Hu, L. Kimerling, and K. Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection,” Opt. Lett.34(21), 3451–3453 (2009). [CrossRef] [PubMed]
  6. E. Schonbrun and K. B. Crozier, “Spring constant modulation in a zone plate tweezer using linear polarization,” Opt. Lett.33(17), 2017–2019 (2008). [CrossRef] [PubMed]
  7. E. Schonbrun, J. Wong, and K. B. Crozier, “Co- and cross-flow extensions in an elliptical optical trap,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(4), 042401 (2009). [CrossRef] [PubMed]
  8. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011). [CrossRef] [PubMed]
  9. S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett.10(7), 2408–2411 (2010). [CrossRef] [PubMed]
  10. E. Schonbrun, C. Rinzler, and K. B. Crozier, “Microfabricated water immersion zone plate optical tweezer,” Appl. Phys. Lett.92(7), 071112 (2008). [CrossRef]
  11. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett.10(9), 3506–3511 (2010). [CrossRef] [PubMed]
  12. K. Grujic, O. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express13(1), 1–7 (2005). [CrossRef] [PubMed]
  13. R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express16(6), 3712–3726 (2008). [CrossRef] [PubMed]
  14. M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol.23(1), 83–87 (2005). [CrossRef] [PubMed]
  15. S. K. Hoi, C. Udalagama, C. H. Sow, F. Watt, and A. A. Bettiol, “Microfluidic sorting system based on optical force switching,” Appl. Phys. B97(4), 859–865 (2009). [CrossRef]
  16. J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A82(5), 053819 (2010). [CrossRef]
  17. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426(6965), 421–424 (2003). [CrossRef] [PubMed]
  18. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip6(3), 422–426 (2006). [CrossRef] [PubMed]
  19. S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett.98(15), 151101 (2011). [CrossRef]
  20. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  21. K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett.9(7), 2623–2629 (2009). [CrossRef] [PubMed]
  22. L. Shiyun and K. B. Crozier, “Optical trapping with real-time feedback using planar silicon micro-ring resonators,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThB6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (1327 KB)     

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited