OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3408–3423

Plasmon filters and resonators in metal-insulator-metal waveguides

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 3408-3423 (2012)
http://dx.doi.org/10.1364/OE.20.003408


View Full Text Article

Enhanced HTML    Acrobat PDF (3783 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the numerical and experimental demonstration of plasmonic Bragg filters and resonators inside metal-insulator-metal (MIM) waveguides. The presented filters and resonators are fabricated using standard top down lithography methods. The optical bandgap of the integrated Bragg filters is experimentally observed and its optical properties are investigated as a function of the grating pitch and the number of grating periods. Transmission filters based on a nanocavity resonance were measured, obtaining Q-factors above 30. Tuning of the cavity wavelength was experimentally achieved by varying the cavity length.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: October 19, 2011
Revised Manuscript: December 2, 2011
Manuscript Accepted: December 2, 2011
Published: January 30, 2012

Citation
P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, "Plasmon filters and resonators in metal-insulator-metal waveguides," Opt. Express 20, 3408-3423 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-3408


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23(1), 413–422 (2005). [CrossRef]
  2. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys.98, 043109 (2005). [CrossRef]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95, 046802 (2005). [CrossRef] [PubMed]
  4. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008). [CrossRef] [PubMed]
  5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003). [CrossRef] [PubMed]
  6. A. L. Falk, F. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M. Jo, M. D. lukin, and H. Park, “Near-field electical detection of optical plasmons and single-plasmon sources,” Nat. Phys.5, 475–479 (2009). [CrossRef]
  7. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2, 496–500 (2008). [CrossRef]
  8. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett.6, 1928–1932 (2006). [CrossRef] [PubMed]
  9. P. Neutens, P. Van Dorpe, L. Lagae, and G. Borghs, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett.10, 1429–1432 (2010). [CrossRef] [PubMed]
  10. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3, 283–286 (2009). [CrossRef]
  11. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997). [CrossRef]
  12. A. R. Md Zain, N. P. Johnson, M. Sorel, and M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express16, 12084–112089 (2008). [CrossRef]
  13. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a ”zipper” photonic crystal optomechanical cavity,” Opt. Express17, 3802–3817 (2009). [CrossRef] [PubMed]
  14. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express14, 11318–11323 (2006). [CrossRef]
  15. J.-Q. Liu, L.-L. Wang, M.-D. He, W.-Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express16, 4888–4894 (2008). [CrossRef] [PubMed]
  16. Y. Liu, Y. Liu, and J. Kim, “Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express18, 11589–11598 (2010). [CrossRef] [PubMed]
  17. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photonics Technol. Lett.19, 91–93 (2007). [CrossRef]
  18. Y. Q. D. Gan, J. Ma, J. Cui, C. Wang, and X. Luo, “Spectrally selective splitters with metal-dielectric-metal surface plasmon waveguides,” Appl. Phys. B95, 807–812 (2009). [CrossRef]
  19. www.comsol.com .
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
  21. J. A. Sánchez-Gil, “Distributed feedback gratings for surface-plasmon polaritons based on metal nanogroove/ridge arrays,” Opt. Lett.32(16), 2330–2332 (2007). [CrossRef] [PubMed]
  22. J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: Efficient mirrors,” Appl. Phys. Lett.86, 251106 (2005). [CrossRef]
  23. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett.7(4), 880–884 (2007). [CrossRef] [PubMed]
  24. M. Kuttge, H. Kurz, J. Gómez Rivas, J. A. Sánchez-Gil, and P. Haring Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys.101, 023707 (2007). [CrossRef]
  25. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett.87, 013107 (2005). [CrossRef]
  26. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-galery microcavity,” Nature457, 455–459 (2009). [CrossRef] [PubMed]
  27. P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett.91, 191122 (2007).
  28. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated Surface plasmon cavities,” Nano Lett.7(5), 1352–1359 (2007). [CrossRef] [PubMed]
  29. Z. Han, “Ultracompact plasmonic racetrack resonators in metal-insulator-metal waveguides,” Photonic Nanostruct.8(3), 172–176 (2010). [CrossRef]
  30. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys.43, 055103 (2010). [CrossRef]
  31. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express18(17), 17922–17927 (2010). [CrossRef] [PubMed]
  32. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009). [CrossRef] [PubMed]
  33. A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys.- Condens. Mat.21, 375301 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited