OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3467–3472

Broadband dispersion compensation using inner cladding modes in photonic crystal fibers

Felipe Beltrán-Mejía, Cristiano M. B. Cordeiro, Pedro Andrés, and Enrique Silvestre  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 3467-3472 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (701 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photonic crystal fiber is optimized for chromatic dispersion compensation by using inner cladding modes. To this end, a photonic-oriented version of the downhill-simplex algorithm is employed. The numerical results show a dispersion profile that accurately compensates the targeted dispersion curve, as well as its dispersion slope. The presented fiber has a simple structure, while radiation losses can be reduced simply by adding a few more air-hole rings. Fabrication tolerances are also considered showing how fabrication inaccuracies effects can be overridden by just adjusting the compensation length.

© 2012 OSA

OCIS Codes
(230.2035) Optical devices : Dispersion compensation devices
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 11, 2011
Revised Manuscript: January 20, 2012
Manuscript Accepted: January 22, 2012
Published: January 30, 2012

Felipe Beltrán-Mejía, Cristiano M. B. Cordeiro, Pedro Andrés, and Enrique Silvestre, "Broadband dispersion compensation using inner cladding modes in photonic crystal fibers," Opt. Express 20, 3467-3472 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  2. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Donor and acceptor guided modes in photonic crystal fibers,” Opt. Lett.25(18), 1328–1330 (2000). [CrossRef]
  3. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett.25(18), 1325–1327 (2000). [CrossRef]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  5. E. Silvestre, T. Pinheiro-Ortega, P. Andrés, J. J. Miret, and A. Coves, “Differential toolbox to shape dispersion behavior in photonic crystal fibers,” Opt. Lett.31(9), 1190–1192 (2006). [CrossRef] [PubMed]
  6. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett.25(11), 790–792 (2000). [CrossRef]
  7. A. Ferrando, E. Silvestre, P. Andrés, J. Miret, and M. Andrés, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express9(13), 687–697 (2001). [CrossRef] [PubMed]
  8. W. Reeves, J. Knight, P. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express10(14), 609–613 (2002). [PubMed]
  9. B. Eggleton, P. Westbrook, C. White, C. Kerbage, R. Windeler, and G. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fibers,” J. Lightwave Technol.18(8), 1084–1100 (2000). [CrossRef]
  10. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, 1992), chap. 10, pp. 408–412.
  11. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express13(10), 3728–3736 (2005). [CrossRef] [PubMed]
  12. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the nelder–mead simplex method in low dimensions,” SIAM J. Optimiz.9(1), 112–147 (1998). [CrossRef]
  13. S. Cui, D. Liu, S. Yu, B. Huang, C. Ke, M. Zhang, and C. Liu, “Downhill simplex algorithm based approach to holey fiber design for tunable fiber parametric wavelength converters,” Opt. Express18(10), 9831–9839 (2010). [CrossRef] [PubMed]
  14. Corning© LEAF© optical fiber. Product Information (Corning Inc., N.Y. 2009).
  15. K. Thyagarajan, R. Varshney, P. Palai, A. Ghatak, and I. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett.8(11), 1510–1512 (1996). [CrossRef]
  16. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, “Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Express14(2), 893–900 (2006). [CrossRef] [PubMed]
  17. S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antenn. Propag.44(12), 1630–1639 (1996). [CrossRef]
  18. A. Oskooi and S. G. Johnson, “Distinguishing correct from incorrect PML proposals and a corrected unsplit PML for anisotropic, dispersive media,” J. Comput. Phys.230(7), 2369–2377 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited