OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3479–3489

Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications

Yung-Chi Yao, Meng-Tsan Tsai, Hsu-Cheng Hsu, Li-Wei She, Chun-Mao Cheng, Yi-Ching Chen, Chien-Jang Wu, and Ya-Ju Lee  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 3479-3489 (2012)
http://dx.doi.org/10.1364/OE.20.003479


View Full Text Article

Enhanced HTML    Acrobat PDF (2351 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-dimensional (2D) Si-nanorod arrays offer a promising architecture that has been widely recognized as attractive devices for photovoltaic applications. To further reduce the Fresnel reflection that occurs at the interface between the air and the 2D Si-nanorod array because of the large difference in their effective refractive indices, we propose and adopt a slanted ITO film as an intermediate layer by using oblique-angle sputtering deposition. The nearly continuous surface of the slanted ITO film is lossless and has high electrical conductivity; therefore, it could serve as an electrode layer for solar cells. As a result, the combination of the above-mentioned nanostructures exhibits high optical absorption over a broad range of wavelengths and incident angles, along with a calculated short-circuit current density of JSC = 32.81 mA/cm2 and a power generation efficiency of η = 22.70%, which corresponds to an improvement of approximately 42% over that of its bare single-crystalline Si counterpart.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.1210) Thin films : Antireflection coatings
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.7005) Thin films : Transparent conductive coatings

ToC Category:
Detectors

History
Original Manuscript: November 15, 2011
Revised Manuscript: January 13, 2012
Manuscript Accepted: January 20, 2012
Published: January 30, 2012

Citation
Yung-Chi Yao, Meng-Tsan Tsai, Hsu-Cheng Hsu, Li-Wei She, Chun-Mao Cheng, Yi-Ching Chen, Chien-Jang Wu, and Ya-Ju Lee, "Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications," Opt. Express 20, 3479-3489 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-3479


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, and J.-H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express18(S3), A286–A292 (2010). [CrossRef] [PubMed]
  2. S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. (Deerfield Beach Fla.)21(9), 973–978 (2009). [CrossRef]
  3. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express14(2), 527–534 (2006). [CrossRef] [PubMed]
  4. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).
  5. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett.8(5), 1429–1433 (2008). [CrossRef] [PubMed]
  6. S. J. An, J. H. Chae, G.-C. Yi, and G. H. Park, “Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays,” Appl. Phys. Lett.92(12), 121108 (2008). [CrossRef]
  7. J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index Indium Tin Oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.)20(4), 801–804 (2008). [CrossRef]
  8. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008). [CrossRef]
  9. P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective Indium Tin Oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009). [CrossRef]
  10. J. A. Dobrowolski, Handbook of Optics (McGraw-Hill, 1995).
  11. C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express16(12), 8748–8754 (2008). [CrossRef] [PubMed]
  12. Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008). [CrossRef] [PubMed]
  13. J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113 (2009). [CrossRef]
  14. J. Son, L. K. Verma, A. J. Danner, C. S. Bhatia, and H. Yang, “Enhancement of optical transmission with random nanohole structures,” Opt. Express19(S1), A35–A40 (2011). [CrossRef] [PubMed]
  15. J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3), A258–A268 (2011). [CrossRef] [PubMed]
  16. J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009). [CrossRef] [PubMed]
  17. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010). [CrossRef] [PubMed]
  18. C. T. Wu, F. H. Ko, and C. H. Lin, “Self-organized tantalum oxide nanopyramidal arrays for antireflective structure,” Appl. Phys. Lett.90(17), 171911 (2007). [CrossRef]
  19. C.-H. Sun, W.-L. Min, N. C. Linn, P. Jiang, and B. Jiang, “Templated fabrication of large area subwavelength antireflection gratings on silicon,” Appl. Phys. Lett.91(23), 231105 (2007). [CrossRef]
  20. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007). [CrossRef] [PubMed]
  21. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett.88(20), 201116 (2006). [CrossRef]
  22. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998). [CrossRef]
  23. A. M. Goodman, “Optical interference method for the approximate determination of refractive index and thickness of a transparent layer,” Appl. Opt.17(17), 2779–2787 (1978). [CrossRef] [PubMed]
  24. S. J. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, J. S. Yu, and Y. T. Lee, “Antireflective property of thin film a-Si solar cell structures with graded refractive index structure,” Opt. Express19(S2), A108–A117 (2011). [CrossRef] [PubMed]
  25. M.-F. Chen, H.-C. Chang, A. S. P. Chang, S.-Y. Lin, J.-Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt.46(26), 6533–6538 (2007). [CrossRef] [PubMed]
  26. G.-R. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Rapid self-assembly of Ni nanodots on Si substrate covered by a less-adhesive and heat-accumulated SiO2 layers,” Appl. Phys. Lett.89(7), 073108 (2006). [CrossRef]
  27. Y.-P. Zhao, D.-X. Ye, G.-C. Wang, and T.-M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE5219, 59–73 (2003). [CrossRef]
  28. A. Lisfi and J. C. Lodder, “Magnetic domains in Co thin films obliquely sputtered on a polymer substrate,” Phys. Rev. B63(17), 174441 (2001). [CrossRef]
  29. Y.-J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett.94(14), 141111 (2009). [CrossRef]
  30. F. Wang, H. Y. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application,” Opt. Lett.35(1), 40–42 (2010). [CrossRef] [PubMed]
  31. F. Flory, L. Escoubas, and G. Berginc, “Optical properties of nanostructured materials: a review,” J. Nanophoton.5(1), 052502 (2011). [CrossRef]
  32. D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B20(8), 3292–3302 (1979). [CrossRef]
  33. J. Jackson, Classical Electrodynamics (Wiley, 1999).
  34. B.-S. Chiou and J.-H. Tsai, “Antireflective coating for ITO films deposited on glass substrate,” J. Mater. Sci. Mater. Electron.10(7), 491–495 (1999). [CrossRef]
  35. W. Q. Xie, W. F. Liu, J. I. Oh, and W. Z. Shen, “Optical absorption in c-Si/a-Si:H core/shell nanowire arrays for photovoltaic applications,” Appl. Phys. Lett.99(3), 033107 (2011). [CrossRef]
  36. Y.-J. Lee, C.-J. Lee, and C.-M. Cheng, “Enhancing the conversion efficiency of red emission by spin-coating CdSe quantum dots on the green nanorod light-emitting diode,” Opt. Express18(S4), A554–A561 (2010). [CrossRef] [PubMed]
  37. P. Yeh, Optical Waves in Layered Media (Wiley, 1998).
  38. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  39. ASTMG173–03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, 2005).
  40. C. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys.51(8), 4494–4500 (1980). [CrossRef]
  41. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010). [PubMed]
  42. B. Marion, B. Kroposki, K. Emery, J. del Cueto, D. Myers, and C. Osterwald, Validation of a Photovoltaic Module Energy Ratings Procedure at NREL, Report No. NREL/TP-520-26909 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited