OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3519–3528

Frozen and broadband slow light in coupled periodic nanowire waveguides

Nadav Gutman, W. Hugo Dupree, Yue Sun, Andrey A. Sukhorukov, and C. Martijn de Sterke  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 3519-3528 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1049 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop novel designs enabling slow-light propagation with vanishing group-velocity dispersion (“frozen light”) and slow-light with large delay-bandwidth product, in periodic nanowires. Our design is based on symmetry-breaking of periodic nanowire waveguides and we demonstrate its vailidy through two- and three-dimensional simulations. The slow-light is associated with a stationary inflection point which appears through coupling between forward and backward waveguide modes. The mode coupling also leads to evanescent modes, which enable efficient light coupling to the slow mode.

© 2012 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:

Original Manuscript: December 1, 2011
Revised Manuscript: January 18, 2012
Manuscript Accepted: January 23, 2012
Published: January 30, 2012

Nadav Gutman, W. Hugo Dupree, Yue Sun, Andrey A. Sukhorukov, and C. Martijn de Sterke, "Frozen and broadband slow light in coupled periodic nanowire waveguides," Opt. Express 20, 3519-3528 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express16, 1300–1320 (2008). [CrossRef] [PubMed]
  2. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94, 121106–3 (2009). [CrossRef]
  3. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18, 15859–15869 (2010). [CrossRef] [PubMed]
  4. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express15, 219–226 (2007). [CrossRef] [PubMed]
  5. T. F. Krauss, “Why do we need slow light?” Nature Photon.2, 448–450 (2008). [CrossRef]
  6. T. Baba, “Slow light in photonic crystals,” Nature Photon.2, 465–473 (2008). [CrossRef]
  7. J. B. Khurgin and R. S. Tucker, Slow Light: Science and ApplicationsTailor and FrancisNew York2009
  8. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express14, 1658–1672 (2006). [CrossRef] [PubMed]
  9. J. Ma and M. L. Povinelli, “Effect of periodicity on optical forces between a one-dimensional periodic photonic crystal waveguide and an underlying substrate,” Appl. Phys. Lett.97, 151102 (2010). [CrossRef]
  10. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett.85, 4866–4868 (2004). [CrossRef]
  11. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express14, 9444–9450 (2006). [CrossRef] [PubMed]
  12. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16, 6227–6232 (2008). [CrossRef] [PubMed]
  13. T. P. White, L. C. Botten, C. M. de Sterke, K. B. Dossou, and R. C. McPhedran, “Efficient slow-light coupling in a photonic crystal waveguide without transition region,” Opt. Lett.33, 2644–2646 (2008). [CrossRef] [PubMed]
  14. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett.34, 1072–1074 (2009). [CrossRef] [PubMed]
  15. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12, 104004 (2010). [CrossRef]
  16. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon.3, 206–210 (2009). [CrossRef]
  17. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron.16, 344–356 (2010). [CrossRef]
  18. L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J.2, 404–414 (2010). [CrossRef]
  19. A. Sukhorukov, A. Lavrinenko, D. Chigrin, D. Pelinovsky, and Y. Kivshar, “Slow-light dispersion in coupled periodic waveguides,” J. Opt. Soc. Am. B25, C65–C74 (2008). [CrossRef]
  20. C. Bao, J. Hou, H. Wu, X. Zhou, E. Cassan, X. Gao, and D. Zhang, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett.23, 1700–1702 (2011). [CrossRef]
  21. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11, 2927–2939 (2003). [CrossRef] [PubMed]
  22. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett.87, 253902 (2001). [CrossRef] [PubMed]
  23. A. Figotin and I. Vitebskiy, “Slow light in photonic crystals,” Waves Random Complex Media16, 293–382 (2006). [CrossRef]
  24. A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B67, 165210 (2003). [CrossRef]
  25. A. Figotin and I. Vitebskiy, “Oblique frozen modes in periodic layered media,” Phys. Rev. E68, 036609 (2003). [CrossRef]
  26. J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E71, 036612–12 (2005). [CrossRef]
  27. M. Spasenovic, T. P. White, S. Ha, A. A. Sukhorukov, T. Kampfrath, Y. S. Kivshar, C. M. de Sterke, T. F. Krauss, and L. Kuipers, “Experimental observation of evanescent modes at the interface to slow-light photonic crystal waveguides,” Opt. Lett.36, 1170–1172 (2011). [CrossRef] [PubMed]
  28. S. Ha, M. Spasenovic, A. A. Sukhorukov, T. P. White, C. M. de Sterke, L. K. Kuipers, T. F. Krauss, and Y. S. Kivshar, “Slow-light and evanescent modes at interfaces in photonic crystal waveguides: optimal extraction from experimental near-field measurements,” J. Opt. Soc. Am. B28, 955–963 (2011). [CrossRef]
  29. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E66, 066608 (2002). [CrossRef]
  30. A. Hosseini, X. C. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett.98, 031107 (2011). [CrossRef]
  31. C. M. de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express17, 17338–17343 (2009). [CrossRef]
  32. B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on chip nanofocusing applications,” Nano Lett.9, 3381–3386 (2009). [CrossRef] [PubMed]
  33. A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E63, 066609 (2001). [CrossRef]
  34. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis,” Opt. Express8, 173–190 (2001). [CrossRef] [PubMed]
  35. A. A. Sukhorukov, S. Ha, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Dispersion extraction with near-field measurements in periodic waveguides,” Opt. Express17, 3716–3721 (2009). [CrossRef] [PubMed]
  36. S. Ha, A. A. Sukhorukov, K. B. Dossou, L. C. Botten, C. M. de Sterke, and Y. S. Kivshar, “Bloch-mode extraction from near-field data in periodic waveguides,” Opt. Lett.34, 3776–3778 (2009). [CrossRef] [PubMed]
  37. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun.181, 687–702 (2010). [CrossRef]
  38. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon.1, 65–71 (2007). [CrossRef]
  39. D. Tan, K. Ikeda, P. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010). [CrossRef]
  40. N. Gutman, L. C. Botten, A. A. Sukhorukov, and C. M. de Sterke, “Slow and frozen light in optical waveguides with multiple gratings: Degenerate band edges and stationary inflection points,” submitted to Phys. Rev. A.
  41. N. Gutman, L. C. Botten, A. A. Sukhorukov, and C. M. de Sterke, “Degenerate band edges in optical fiber with multiple grating: efficient coupling to slow light,” Opt. Lett.36, 3257–3259 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited