OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3550–3555

Optically-pumped dilute nitride spin-VCSEL

Kevin Schires, Rihab Al Seyab, Antonio Hurtado, Ville-Markus Korpijärvi, Mircea Guina, Ian D. Henning, and Michael J. Adams  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 3550-3555 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (799 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first room temperature optical spin-injection of a dilute nitride 1300 nm vertical-cavity surface-emitting laser (VCSEL) under continuous-wave optical pumping. We also present a novel experimental protocol for the investigation of optical spin-injection with a fiber setup. The experimental results indicate that the VCSEL polarization can be controlled by the pump polarization, and the measured behavior is in excellent agreement with theoretical predictions using the spin flip model. The ability to control the polarization of a long-wavelength VCSEL at room temperature emitting at the wavelength of 1.3 µm opens up a new exciting research avenue for novel uses in disparate fields of technology ranging from spintronics to optical telecommunication networks.

© 2012 OSA

OCIS Codes
(140.5560) Lasers and laser optics : Pumping
(160.6000) Materials : Semiconductor materials
(230.5440) Optical devices : Polarization-selective devices
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(260.5430) Physical optics : Polarization
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 7, 2011
Revised Manuscript: January 9, 2012
Manuscript Accepted: January 9, 2012
Published: January 30, 2012

Kevin Schires, Rihab Al Seyab, Antonio Hurtado, Ville-Markus Korpijärvi, Mircea Guina, Ian D. Henning, and Michael J. Adams, "Optically-pumped dilute nitride spin-VCSEL," Opt. Express 20, 3550-3555 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Forchel, M. Reinhardt, and M. Fischer, “A monolithic GaInAsN vertical-cavity surface-emitting laser for the 1.3-µm regime,” IEEE Photon. Technol. Lett.12(10), 1313–1315 (2000). [CrossRef]
  2. T. Jouhti, O. Okhotnikov, J. Konttinen, L. A. Gomes, C. S. Peng, S. Karirinne, E.-M. Pavelescu, and M. Pessa, “Dilute nitride vertical-cavity surface-emitting lasers,” New J. Phys.5, 841–846 (2003). [CrossRef]
  3. S. Calvez, N. Laurand, S. Smith, A. Clark, J.-M. Hopkins, H. Sun, M. Dawson, T. Jouhti, J. Kontinnen, and M. Pessa, “Novel 1.3-µm GaInNAs surface-normal devices,” in European Materials Research Society 2004 Spring Meeting, (2004). [CrossRef]
  4. J. Rudolph, D. Hägele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett.82(25), 4516–4518 (2003). [CrossRef]
  5. J. Rudolph, S. Döhrmann, D. Hägele, M. Oestreich, and W. Stolz, “Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons,” Appl. Phys. Lett.87(24), 241117 (2005). [CrossRef]
  6. S. Hövel, N. Gerhardt, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, “Spin controlled optically pumped vertical cavity surface emitting laser,” Electron. Lett.41(5), 251–253 (2005). [CrossRef]
  7. M. Holub and P. Bhattacharya, “Spin-polarized light-emitting diodes and lasers,” J. Phys. D Appl. Phys.40(11), R179–R203 (2007). [CrossRef]
  8. S. Hövel, N. C. Gerhardt, C. Brenner, M. R. Hofmann, F.-Y. Lo, D. Reuter, A. D. Wieck, E. Schuster, and W. Keune, “Spin-controlled LEDs and VCSELs,” Phys. Status Solidi204(2), 500–507 (2007). [CrossRef]
  9. A. Gahl, S. Balle, and M. S. Miguel, “Polarization dynamics of optically pumped VCSELs,” IEEE J. Quantum Electron.35(3), 342–351 (1999). [CrossRef]
  10. H. Ando, T. Sogawa, and H. Gotoh, “Photon-spin controlled lasing oscillation in surface-emitting lasers,” Appl. Phys. Lett.73(5), 566–568 (1998). [CrossRef]
  11. N. Gerhardt, S. Hövel, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, “Enhancement of spin information with vertical cavity surface emitting lasers,” Electron. Lett.42(2), 88–89 (2006). [CrossRef]
  12. S. Iba, S. Koh, K. Ikeda, and H. Kawaguchi, “Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells,” Appl. Phys. Lett.98(8), 081113 (2011). [CrossRef]
  13. C. Mätzler, Thermal Microwave Radiation: Applications for Remote Sensing (Institution of Engineering and Technology, 2006).
  14. M. San Miguel, Q. Feng, and J. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A52(2), 1728–1739 (1995). [CrossRef] [PubMed]
  15. J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron.33(5), 765–783 (1997). [CrossRef]
  16. R. Al-Seyab, D. Alexandropoulos, I. Henning, and M. Adams, “Instabilities in spin-polarized vertical-cavity surface-emitting lasers,” IEEE Photon. J.3(5), 799–809 (2011). [CrossRef]
  17. G. Knowles, R. Fehse, S. Tomić, S. J. Sweeney, T. E. Sale, A. R. Adams, E. P. O’Reilly, G. Steinle, and H. Riechert, “Investigation of 1.3-µm GaInNAs vertical-cavity surface-emitting lasers (VCSELs) using temperature, high-pressure, and modeling techniques,” IEEE J. Sel. Top. Quantum Electron.9(5), 1202–1208 (2003). [CrossRef]
  18. M. J. Adams and D. Alexandropoulos, “Parametric analysis of spin-polarised VCSELs,” IEEE J. Quantum Electron.45(6), 744–749 (2009). [CrossRef]
  19. L. Lombez, P.-F. Braun, H. Carrère, B. Urbaszek, P. Renucci, T. Amand, X. Marie, J. C. Harmand, and V. K. Kalevich, “Spin dynamics in dilute nitride semiconductors at room temperature,” Appl. Phys. Lett.87(25), 252115 (2005). [CrossRef]
  20. C. Reith, S. J. White, M. Mazilu, A. Miller, J. Konttinen, M. Guina, and M. Pessa, “Room temperature electron spin relaxation in GaInNAs multiple quantum wells at 1.3 µm,” Appl. Phys. Lett.89(21), 211122 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited