OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3620–3632

Artificially disordered birefringent optical fibers

S. Herath, N. P. Puente, E. I. Chaikina, and A. Yamilov  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 3620-3632 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1605 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop and experimentally verify a theory of evolution of polarization in artificially-disordered multi-mode optical fibers. Starting with a microscopic model of photo-induced index change, we obtain the first and second order statistics of the dielectric tensor in a Ge-doped fiber, where a volume disorder is intentionally inscribed via UV radiation transmitted through a diffuser. A hybrid coupled-power & coupled-mode theory is developed to describe the transient process of de-polarization of light launched into such a fiber. After certain characteristic distance, the power is predicted to be equally distributed over all co-propagating modes of the fiber regardless of their polarization. Polarization-resolved experiments, confirm the predicted evolution of the state of polarization. Complete mode mixing in a segment of fiber as short as ∼ 10cm after 3.6dB insertion loss is experimentally observed. Equal excitation of all modes in such a multi-mode fiber creates the conditions to maximize the information capacity of the system under e.g. multiple-input-multiple-output (MIMO) transmission setup.

© 2012 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(260.1440) Physical optics : Birefringence
(290.4210) Scattering : Multiple scattering
(290.5825) Scattering : Scattering theory

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 22, 2011
Revised Manuscript: January 11, 2012
Manuscript Accepted: January 11, 2012
Published: January 30, 2012

S. Herath, N. P. Puente, E. I. Chaikina, and A. Yamilov, "Artificially disordered birefringent optical fibers," Opt. Express 20, 3620-3632 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, 1978).
  2. A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science281, 962–967 (1998). [CrossRef] [PubMed]
  3. H. Cao, “Lasing in disordered media,” in Progress in Optics, E. Wolf, ed. (North Holland, 2003), Vol. 45. [CrossRef]
  4. S. E. Skipetrov, “Disorder is the new order,” Nature432, 285–286 (2004). [CrossRef] [PubMed]
  5. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4, 320–322 (2010). [CrossRef]
  6. M. Limonov and R. D. L. Rue, eds., Optical Properties of Photonic Structures: Interplay of Order and Disorder (Francis & Taylor, 2012).
  7. M. Fink, “Time reversed acoustics,” Phys. Today50, 34–40 (1997). [CrossRef]
  8. X. Shen, J. M. Kahn, and M. A. Horowitz, “Compensation for multimode fiber dispersion by adaptive optics,” Opt. Lett.30, 2985–2987 (2005). [CrossRef] [PubMed]
  9. A. Amphawan, “Holographic mode-selective launch for bandwidth enhancement in multimode fiber,” Opt. Express19, 9056–9065 (2011). [CrossRef] [PubMed]
  10. G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Commun.6, 311–335 (1998). [CrossRef]
  11. E. Telatar, “Capacity of multi-antenna gaussian channels,” Euro. Trans. Telecommun.10, 585–595 (1999). [CrossRef]
  12. S. H. Simon, A. L. Moustakas, M. Stoychev, and H. Safar, “Communication in a disordered world,” Phys. Today54, 38–43 (2001). [CrossRef]
  13. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science289, 281–283 (2000). [CrossRef] [PubMed]
  14. M. Nazarathy and A. Agmon, “Coherent transmission direct detection MIMO over short-range optical interconnects and passive optical networks,” J. Lightwave Technol.26, 2037–2045 (2008). [CrossRef]
  15. M. Greenberg, M. Nazarathy, and M. Orenstein, “Multimode fiber as random code generator–application to massively parallel MIMO transmission,” J. Lightwave Technol.26, 882–890 (2008). [CrossRef]
  16. R. C. J. Hsu, A. Tarighat, A. Shah, A. H. Sayed, and B. Jalali, “Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links,” IEEE Commun. Lett.10, 195–197 (2006). [CrossRef]
  17. N. P. Puente, E. I. Chaikina, S. Herath, and A. Yamilov, “Fabrication, characterization, and theoretical analysis of controlled disorder in the core of optical fibers,” Appl. Opt.50, 802–810 (2011). [CrossRef] [PubMed]
  18. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).
  19. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J.51, 1767–1783 (1972).
  20. R. Olshansky, “Mode coupling effects in graded-index optical fibers,” Appl. Opt.14, 935–945 (1975). [PubMed]
  21. K. O. Hill and G. Meltz, “Fiber Bragg grating technology: Fundamentals and overview,” J. Lightwave Technol.15, 1263–1276 (1997). [CrossRef]
  22. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15, 1277 –1294 (1997). [CrossRef]
  23. A. Kamal and P. S. J. Russell, “Physical origins and general dielectric tensor of photoinduced anisotropy in optical fibers and bulk glasses,” J. Opt. Soc. Am. B11, 1576–1584 (1994). [CrossRef]
  24. T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B11, 2100–2105 (1994). [CrossRef]
  25. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett.19, 1260–1262 (1994). [CrossRef] [PubMed]
  26. N. Belhadj, Y. Park, S. LaRochelle, K. Dossou, and J. Azana, “UV-induced modification of stress distribution in optical fibers and its contribution to bragg grating birefringence,” Opt. Express16, 8727–8741 (2008). [CrossRef] [PubMed]
  27. R. K. Luneburg, Mathematical Theory of Optics (Univ. California Press, 1964).
  28. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Coberts & Co, Englewood, 2007).
  29. G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol.9, 1439–1456 (1991). [CrossRef]
  30. J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA97, 4541–4550 (2000). [CrossRef] [PubMed]
  31. D. Marcuse, “Coupled power equations for lossy fibers,” Appl. Opt.17, 3232–3237 (1978). [CrossRef] [PubMed]
  32. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995).
  33. O. Korotkova, “Changes in statistics of the instantaneous stokes parameters of a quasi-monochromatic electromagnetic beam on propagation,” Opt. Commun.261, 218–224 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited