OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3642–3653

Resolution limitations for tailored picture-generating freeform surfaces

S. Zwick, R. Feßler, J. Jegorov, and G. Notni  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 3642-3653 (2012)
http://dx.doi.org/10.1364/OE.20.003642


View Full Text Article

Enhanced HTML    Acrobat PDF (942 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Picture-generating freeform surfaces are able to generate a picture in a defined plane by incoherent beam shaping comparable to illumination purposes. No classical imaging is performed. Therefore the classical Rayleigh criterion of the diffraction limit cannot be applied. In this paper, we investigate the physical light formation of picture-generating freeform surfaces using Fresnel-Huygens-based simulations. A criterion for the diffraction limit was found. The resolution of such surfaces is significantly inferior to the resolution of classical imaging systems. However, in many cases, such systems are limited by the geometrical resolution. The influence of those two limitations were examined and a maximum of resolution, being limited by diffraction and by geometrical parameters can be found.

© 2012 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(350.3950) Other areas of optics : Micro-optics
(350.5730) Other areas of optics : Resolution
(080.4228) Geometric optics : Nonspherical mirror surfaces
(220.4298) Optical design and fabrication : Nonimaging optics
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Imaging Systems

History
Original Manuscript: September 13, 2011
Revised Manuscript: December 15, 2011
Manuscript Accepted: December 18, 2011
Published: January 31, 2012

Citation
S. Zwick, R. Feßler, J. Jegorov, and G. Notni, "Resolution limitations for tailored picture-generating freeform surfaces," Opt. Express 20, 3642-3653 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-3642


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Minano, P. Benitez, J. Blen, and A. Santamaria, “High-efficiency free-form condenser overcoming rotational symmetry limitations.” Opt. Express16, 20193–20205 (2008). [CrossRef] [PubMed]
  2. B. Yang, J. Makinen, M. Aikio, G. Jin, and Y. Wang, “Free-form lens design for wide-angle imaging with an equidistance projection scheme,” Optik120, 74–78 (2009). [CrossRef]
  3. R. A. Hicks, “Controlling a ray bundle with a free-form reflector.” Opt. Lett.33, 1672–4 (2008). [CrossRef] [PubMed]
  4. F. M. Dickey and S. C. Holswade, eds., Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000). [CrossRef]
  5. D. L. Shealy, “Optical design of laser beam shaping systems,” Proc. SPIE4832, 344–358 (2002). [CrossRef]
  6. R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Elsevier Academic Press, 2005).
  7. J. C. Miñano, P. Benítez, and A. Santamaría, “Free-form optics for illumination,” Opt. Rev.16, 99–102 (2010). [CrossRef]
  8. V. Oliker, “Mathematical Aspects of Design of Beam Shaping Surfaces in Geometrical Optics,” in Trends in Nonlinear Analysis, M. Kirkilionis, S. Kromker, R. Rannacher, and F. Tomi eds. (Springer, 2003), pp. 193–224.
  9. H. Ries and J. Muschaweck, “Tailored freeform optical surfaces.” J. Opt. Soc. Am. A.19, 590–595 (2002). [CrossRef]
  10. D. Michaelis, S. Kudaev, R. Steinkopf, A. Gebhardt, P. Schreiber, and A. Bräuer, “Incoherent beam shaping with freeform mirror,” Proc. SPIE7059, 705905 (2008). [CrossRef]
  11. M. Kurz, D. Oberschmidt, N. Siedow, R. Fessler, and J. Jevgenijs, “Mit schnellem Algorithmus zur perfekten Freiformoptik,” Mikroproduktion03, 10–12 (2009).
  12. D. Michaelis, P. Schreiber, and A. Bräuer, “Cartesian oval representation of freeform optics in illumination systems.” Opt. Lett.36, 918–920 (2011). [CrossRef] [PubMed]
  13. M. Brennesholtz and E. Stupp, Projection Displays (Wiley SID, 2008).
  14. S. Zwick, P. Kühmstedt, and G. Notni, “Phase-shifting fringe projection system using freeform optics,” Proc. SPIE8169, 816933 (2011).
  15. A. V. Pogorelov and S. P. Novikov, Multidimensional Monge-Ampere equation (Harwood Academic Publishers, 1995).
  16. H. Gross, H. Zügge, M. Peschka, and F. Blechinger, Handbook of Optical Systems, Vol. 3 (Wiley-VCH, 2007).
  17. H. Gross, Handbook of Optical Systems, Vol. 1 (Wiley-VCH, 2005). [CrossRef]
  18. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  19. D. G. Voelz, Computational Fourier Optics: A MATLAB Tutorial (SPIE Tutorial Texts Vol. TT89) (SPIE Press, 2011).
  20. E. Adelson and J. Wang, “Single lens stereo with a plenoptic camera,” IEEE Transactions on Pattern Analysis and Machine Intelligence14, 99–106 (1992). [CrossRef]
  21. R. Ng, M. Levoy, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-held Plenoptic Camera,” Stanford Tech Report CTSR 2005-02 (2005).
  22. R. Shack and B. Platt, “Abstract: Production and Use of a Lenticular Hartmann Screen,” J. Opt. Soc. Am.61, 656 (1971).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited