OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3675–3692

InAs/InP(100) quantum dot waveguide photodetectors for swept-source optical coherence tomography around 1.7 µm

Yuqing Jiao, Bauke W. Tilma, Junji Kotani, Richard Nötzel, Meint K. Smit, Sailing He, and Erwin A. J. M. Bente  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 3675-3692 (2012)
http://dx.doi.org/10.1364/OE.20.003675


View Full Text Article

Enhanced HTML    Acrobat PDF (1630 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper a study of waveguide photodetectors based on InAs/InP(100) quantum dot (QD) active material are presented for the first time. These detectors are fabricated using the layer stack of semiconductor optical amplifiers (SOAs) and are compatible with the active-passive integration technology. We investigated dark current, responsivity as well as spectral response and bandwidth of the detectors. It is demonstrated that the devices meet the requirements for swept-source optical coherent tomography (SS-OCT) around 1.7 μm. A rate equation model for QD-SOAs was modified and applied to the results to understand the dynamics of the devices. The model showed a good match to the measurements in the 1.6 to 1.8 μm wavelength range by fitting only one of the carrier escape rates. An equivalent circuit model was used to determine the capacitances which dominated the electrical bandwidth.

© 2012 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Detectors

History
Original Manuscript: November 15, 2011
Revised Manuscript: December 20, 2011
Manuscript Accepted: December 23, 2011
Published: January 31, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Yuqing Jiao, Bauke W. Tilma, Junji Kotani, Richard Nötzel, Meint K. Smit, Sailing He, and Erwin A. J. M. Bente, "InAs/InP(100) quantum dot waveguide photodetectors for swept-source optical coherence tomography around 1.7 µm," Opt. Express 20, 3675-3692 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-3675


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997). [CrossRef] [PubMed]
  3. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  4. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  5. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med.1(9), 970–972 (1995). [CrossRef] [PubMed]
  6. D.-J. Faber, Department of Biomedical Engineering and Physics, Academic Medical Center (AMC), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (personal communication, 2007).
  7. V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express1(1), 176–185 (2010). [CrossRef] [PubMed]
  8. B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron. (to be published).
  9. D. J. Faber and T. G. v. Leeuwen, “Optical coherence tomography,” in Optical-thermal response of laser-irradiated tissue, 2nd ed., A. J. Welch and M. J. C. v. Gemert, eds. (Springer, 2011).
  10. Thorlabs PDB120 series, http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=2151 .
  11. I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Unlu, and E. Ozbay, “InGaAs-based high-performance p-i-n photodiodes,” IEEE Photon. Technol. Lett.14(3), 366–368 (2002). [CrossRef]
  12. H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron.10(4), 668–672 (2004). [CrossRef]
  13. Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol.47(3), 257–262 (2006). [CrossRef]
  14. J. Oh, S. Csutak, and C. Campbell, “High-speed interdigitated Ge PIN photodetectors,” IEEE Photon. Technol. Lett.14(3), 369–371 (2002). [CrossRef]
  15. A. Rogalski and R. Ciupa, “Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes,” J. Electron. Mater.28(6), 630–636 (1999). [CrossRef]
  16. Thorlabs SIR5 series, http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=1297 .
  17. Hamamatsu G8423 series, http://sales.hamamatsu.com/index.php?id=13157898 .
  18. Thorlabs FDG series, http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=2822 .
  19. Hamamatsu P series, http://jp.hamamatsu.com/products/sensor-ssd/pd128/pd134/index_en.html .
  20. C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov, and G. N. Gol'tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors,” Appl. Phys. Lett.91(3), 031106 (2007). [CrossRef]
  21. S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, “Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector,” Appl. Phys. Lett.73(7), 963–965 (1998). [CrossRef]
  22. S.-F. Tang, S.-Y. Lin, and S.-C. Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett.78(17), 2428–2430 (2001). [CrossRef]
  23. B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 μm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron.41(10), 735–749 (2009). [CrossRef]
  24. S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89(7), 073115 (2006). [CrossRef]
  25. R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys.45(8B), 6544–6549 (2006). [CrossRef]
  26. H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bente, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, “Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm,” Electron. Lett.44(8), 522–523 (2008). [CrossRef]
  27. Ultrafast Sensors, http://www.ultrafastsensors.com/Amplifier.htm .
  28. Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron.42(7), 725–732 (2006). [CrossRef]
  29. L. Yang, D. Dai, B. Yang, Z. Sheng, and S. He, “Characteristic analysis of tapered lens fibers for light focusing and butt-coupling to a silicon rib waveguide,” Appl. Opt.48(4), 672–678 (2009). [CrossRef] [PubMed]
  30. A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett.81(6), 981–983 (2002). [CrossRef]
  31. L. Xu, M. Nikoufard, X. Leijtens, T. de Vries, E. Smalbrugge, R. Notzel, Y. Oei, and M. K. Smit, “High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate,” IEEE Photon. Technol. Lett.20(23), 1941–1943 (2008). [CrossRef]
  32. K. Kato, S. Hata, K. Kawano, J. Yoshida, and A. Kozen, “A high-efficiency 50 GHz InGaAs multimode waveguide photodetector,” IEEE J. Quantum Electron.28(12), 2728–2735 (1992). [CrossRef]
  33. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B61(11), 7595–7603 (2000). [CrossRef]
  34. M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron.38(4-6), 381–394 (2006). [CrossRef]
  35. H. Jiang and P. K. L. Yu, “Equivalent circuit analysis of harmonic distortions in photodiode,” IEEE Photon. Technol. Lett.10(11), 1608–1610 (1998). [CrossRef]
  36. J. Kotani, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. A. J. M. Bente, M. K. Smit, and R. Notzel, “First demonstration of single-layer InAs/InP (100) quantum-dot laser: continuous wave, room temperature, ground state,” Electron. Lett.45(25), 1317–1318 (2009). [CrossRef]
  37. E. W. Bogaart, R. Nötzel, Q. Gong, J. E. M. Haverkort, and J. H. Wolter, “Ultrafast carrier capture at room temperature in InAs/InP quantum dots emitting in the 1.55 μm wavelength region,” Appl. Phys. Lett.86(17), 173109 (2005). [CrossRef]
  38. M. Gioannini and I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron.43(10), 941–949 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited