OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3693–3702

Giant resonance absorption in ultra-thin metamaterial periodic structures

Avner Yanai, Meir Orenstein, and Uriel Levy  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 3693-3702 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1517 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the interaction of an incident plane wave with a metamaterial periodic structure consisting of alternating layers of positive and negative refractive index with average zero refractive index. We show that the existence of very narrow resonance peaks for which giant absorption - 50% at layer thickness of 1% of the incident wavelength - is exhibited. Maximum absorption is obtained at a specific layer thickness satisfying the critical coupling condition. This phenomenon is explained by the Rayleigh anomaly and by the excitation of Fabry Perot modes in the periodic layer. In addition, we investigate the modes supported by the structures for several limiting cases, and show that zero phase accumulation in the periodic metamaterial is obtained at resonance.

© 2012 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(240.0240) Optics at surfaces : Optics at surfaces
(240.6690) Optics at surfaces : Surface waves
(310.2790) Thin films : Guided waves

ToC Category:

Original Manuscript: November 21, 2011
Revised Manuscript: January 12, 2012
Manuscript Accepted: January 18, 2012
Published: January 31, 2012

Avner Yanai, Meir Orenstein, and Uriel Levy, "Giant resonance absorption in ultra-thin metamaterial periodic structures," Opt. Express 20, 3693-3702 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Engheta and R. Ziolkowski, Metamaterials: Physics and Engineering Explorations, (Wiley, 2006).
  2. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10, 509 (1968). [CrossRef]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966 (2000). [CrossRef] [PubMed]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000). [CrossRef] [PubMed]
  5. S. Nefedov and S. A. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E66, 036611 (2002). [CrossRef]
  6. J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett.90(8), 083901 (2003). [CrossRef] [PubMed]
  7. L. Wu, S. He, and L. F. Shen, “Band structure for a one-dimensional photonic crystal containing left-handed materials,” Phys. Rev. B67, 235103 (2003). [CrossRef]
  8. A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag.51, 2558–2571 (2003). [CrossRef]
  9. D. R. Fredkin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett.81, 1753–1755 (2002). [CrossRef]
  10. Y. Yuan, L. Ran, J. Huangfu, H. Chen, L. Shen, and J. A. Kong, “Experimental verification of zero order bandgap in a layered stack of left-handed and right-handed materials,” Opt. Express14, 2220–2227 (2006). [CrossRef] [PubMed]
  11. S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett.102, 203905 (2009). [CrossRef] [PubMed]
  12. Y. Jin, S. Xiao, N. A. Mortensen, and S. He, “Arbitrarily thin metamaterial structure for perfect absorption and giant magnification,” Opt. Express19, 11114–11119 (2011). [CrossRef] [PubMed]
  13. L. Wu, S. He, and L. Chen, “On unusual narrow transmission bands for a multi-layered periodic structure containing left-handed materials,” Opt. Express11, 1283–1290 (2003). [CrossRef] [PubMed]
  14. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12, 1068–1076 (1995). [CrossRef]
  15. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A13, 1870–1876 (1996). [CrossRef]
  16. P. Lalanne and G. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A13, 779–784 (1996). [CrossRef]
  17. T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28, 238–244 (2011). [CrossRef]
  18. P. Yeh, Optical waves in layered media, (John Wiley & Sons, New York, 1988).
  19. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B79, 035120 (2009). [CrossRef]
  20. A. Hessel and A. A. Oliner, “A new theory of Wood anomalies on optical gratings,” Appl. Opt.4, 1275–1297 (1965). [CrossRef]
  21. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961). [CrossRef]
  22. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B67, 085415 (2003). [CrossRef]
  23. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red-shifts and red tails in hole array transmission spectra,” Opt. Commun.225, 331–336 (2003). [CrossRef]
  24. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A14, 2985–2993 (1997). [CrossRef]
  25. S. M. Norton, T. Erdogan, and G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A14, 629–639 (1997). [CrossRef]
  26. V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express17(24), 21897–21909 (2009). [CrossRef] [PubMed]
  27. R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter13(9), 1811–1818 (2001). [CrossRef]
  28. S. A. Darmanyan, M. Neviere, and A. A. Zakhidov, “Surface modes at the interface of conventional and left-handed media,” Opt. Commun.225, 233–240 (2003). [CrossRef]
  29. N. M. Litchinitser, A. I. Maimistov, I. R. Gabitov, R. Z. Sagdeev, and V. M. Shalaev, “Metamaterials: electromagnetic enhancement at zero-index transition,” Opt. Lett.33, 2350–2352 (2008). [CrossRef] [PubMed]
  30. H. A. Haus, Waves and fields in Optoelectronics, (New Jersey, Prentice-Hall Inc., 1984).
  31. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.4, 321–322 (2000). [CrossRef]
  32. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer-Verlag, New York, 1988).
  33. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited