OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3733–3743

Enhanced photon absorption and carrier generation in nanowire solar cells

Wei Wang, Shaomin Wu, Randy. J. Knize, Kitt Reinhardt, Yalin Lu, and Shaochen Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 3733-3743 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1374 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Overall performance of a thin film solar cell is determined by the efficiency of converting photons to electrons through light absorption, carrier generation, and carrier collection. Recently, photon management has emerged as a powerful tool to further boost this conversion efficiency. Here we propose a novel nanograting solar cell design that achieves enhanced broadband light absorption and carrier generation in conjunction with the reduced use of active and non-earth-abundant materials. A test using this design for the short circuit current density in CuInxGa(1-x)Se2 (CIGS) thin film solar cells shows up to 250% enhancement when compared to the bare thin film cells. In addition, placing metal strips on top of the nanograting to act as the top electrode reduces the use of non-earth-abundant materials that is normally used as the transparent conducting materials. This novel solar cell design has the potential to become a new solar cell platform technology for various thin film solar cell systems.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Solar Energy

Original Manuscript: December 6, 2011
Revised Manuscript: January 21, 2012
Manuscript Accepted: January 23, 2012
Published: January 31, 2012

Wei Wang, Shaomin Wu, Randy. J. Knize, Kitt Reinhardt, Yalin Lu, and Shaochen Chen, "Enhanced photon absorption and carrier generation in nanowire solar cells," Opt. Express 20, 3733-3743 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  2. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004). [CrossRef]
  3. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A205(12), 2844–2861 (2008). [CrossRef]
  4. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett.95(26), 263902 (2005). [CrossRef] [PubMed]
  5. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys.104(12), 123102 (2008). [CrossRef]
  6. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005). [CrossRef]
  7. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  8. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3510 (2009). [CrossRef]
  9. N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett.32(19), 2825–2827 (2007). [CrossRef] [PubMed]
  10. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006). [CrossRef]
  11. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett.8(12), 4391–4397 (2008). [CrossRef] [PubMed]
  12. W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10(6), 2012–2018 (2010). [CrossRef] [PubMed]
  13. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.2, 517 (2011). [CrossRef] [PubMed]
  14. L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009). [CrossRef] [PubMed]
  15. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010). [PubMed]
  16. E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  17. L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J. A. Schuller, S. H. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010). [CrossRef] [PubMed]
  18. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009). [CrossRef] [PubMed]
  19. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl.16(3), 235–239 (2008). [CrossRef]
  20. K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films480–481, 499–502 (2005). [CrossRef]
  21. R. D. Wieting, “CIS product introduction: progress and challenges,” in Ncpv Photovoltaics Program Review - Proceedings of the 15th Conference, M. AlJassim and J. P. Thornton, eds. (1999) pp. 3–8.
  22. A. Jasenek, U. Rau, K. Weinert, I. M. Kötschau, G. Hanna, G. Voorwinden, M. Powalla, H. W. Schock, and J. H. Werner, “Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation,” Thin Solid Films387(1-2), 228–230 (2001). [CrossRef]
  23. J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl, and F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films451–452, 544–551 (2004). [CrossRef]
  24. N. S. Lewis, “Toward cost-effective solar energy use,” Science315(5813), 798–801 (2007). [CrossRef] [PubMed]
  25. Z. Y. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A. C. Ford, Y. L. Chueh, and A. Javey, “Toward the development of printable nanowire electronics and sensors,” Adv. Mater. (Deerfield Beach Fla.)21(37), 3730–3743 (2009). [CrossRef]
  26. S. Nanomanufacturing, Chen, ed., Nanotechnology Book Series (American Scientific Publishers, Stevenson Ranch, 2009), vol. 284.
  27. COMSOL 3.3 Reference Manual, version 3.3 ed (2005).
  28. A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. M. H. Chong, “Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express12(2), 234–248 (2004). [CrossRef] [PubMed]
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  30. M. I. Alonso, M. Garriga, C. A. D. Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys,” Appl. Phys. A74, 659–664 (2002).
  31. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  32. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002). [CrossRef] [PubMed]
  33. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett.95(26), 263902 (2005). [CrossRef] [PubMed]
  34. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  35. S. A. Maier, Plasmonics: Fundamentals and Applications, 1st. ed. (Springer, 2007).
  36. B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited