OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3803–3813

Superbroadband near-IR photoluminescence from Pr3+-doped fluorotellurite glasses

Bo Zhou, Lili Tao, Yuen H. Tsang, Wei Jin, and Edwin Yue-Bun Pun  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 3803-3813 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1451 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Praseodymium(Pr3+)-doped fluorotellurite glasses were synthesized and broadband photoluminescence (PL) covering a wavelength range from 1.30 to 1.67 μm was observed under both 488 and 590 nm wavelength excitations. The broadband PL emission is mainly due to the radiative transition from the manifolds Pr3+: 1D2 to 1G4. The PL line-shape, band width, and lifetime were modified by the Pr3+ dopant concentration, and a quantum efficiency as high as 73.7% was achieved with Pr3+ dopant in a low concentration of 0.05 mol%. The good spectroscopic properties were also predicted by the Judd-Ofelt analysis, which indicates a stronger asymmetry and covalent bonding between the Pr3+ sites and the matrix lifgand field. The large stimulated emission cross-section, long measured lifetime, and broad emission bandwidth confirm the potential of the Pr3+-singly doped fluorotellurite glass as broadband luminescence sources for the broadband near-infrared optical amplifications and tunable lasers.

© 2012 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(230.2285) Optical devices : Fiber devices and optical amplifiers

ToC Category:

Original Manuscript: October 12, 2011
Revised Manuscript: December 1, 2011
Manuscript Accepted: December 5, 2011
Published: February 1, 2012

Bo Zhou, Lili Tao, Yuen H. Tsang, Wei Jin, and Edwin Yue-Bun Pun, "Superbroadband near-IR photoluminescence from Pr3+-doped fluorotellurite glasses," Opt. Express 20, 3803-3813 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature404(6775), 262–264 (2000). [CrossRef] [PubMed]
  2. S. Kasap, “Optoelectronics,” in The Optics Encyclopedia, T. Brown, K. Creath, H. Kogelnik, M. A. Kriss, J. Schmit, and M. J. Weber, eds. (Wiley-VCH, Weihein, Germany, 2004), Vol. 4., pp. 2237–2284.
  3. See, for example, M. J. F. Digonnet, ed., Rare-Earth-Doped Fiber Lasers and Amplifiers (Second Edition, Revised and Expanded), (Marcel Dekker, New York, 2009), and references therein.
  4. H. Takebe, K. Yoshino, T. Murata, K. Morinaga, J. Hector, W. S. Brocklesby, D. W. Hewak, J. Wang, and D. N. Payne, “Spectroscopic properties of Nd3+ and Pr3+ in gallate glasses with low phonon energies,” Appl. Opt.36(24), 5839–5843 (1997). [CrossRef] [PubMed]
  5. M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt.39(27), 4979–4984 (2000). [CrossRef] [PubMed]
  6. B. Zhou, H. Lin, D. Yang, and E. Y. B. Pun, “Emission of 1.38 μm and gain properties from Ho3+-doped low-phonon-energy gallate bismuth lead oxide glasses for fiber-optic amplifiers,” Opt. Lett.35(2), 211–213 (2010). [CrossRef] [PubMed]
  7. C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett.81(8), 1414–1416 (2002). [CrossRef]
  8. K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88(7), 073111 (2006). [CrossRef]
  9. J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped tellurite fiber amplifier and tunable laser using Er/Ce codoping scheme,” IEEE Photon. Technol. Lett.23(11), 736–738 (2011). [CrossRef]
  10. S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim.5(12), 815–824 (2002). [CrossRef]
  11. S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett.82(20), 3445–3447 (2003). [CrossRef]
  12. L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fibre,” Opt. Express12(11), 2429–2434 (2004). [CrossRef] [PubMed]
  13. Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett.87(11), 111103 (2005). [CrossRef]
  14. D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys.101(11), 113511 (2007). [CrossRef]
  15. Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc.92(12), 3088–3091 (2009). [CrossRef]
  16. B. Zhou and E. Y. B. Pun, “Broadband near-infrared photoluminescence and energy transfer in Tm3+/Er3+ codoped low phonon energy gallate bismuth lead glasses,” J. Phys. D Appl. Phys.44(28), 285404 (2011). [CrossRef]
  17. K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999). [CrossRef]
  18. M. Y. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett.33(18), 2131–2133 (2008). [CrossRef] [PubMed]
  19. V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett.92(4), 041908 (2008). [CrossRef]
  20. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009). [CrossRef] [PubMed]
  21. B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett.92(15), 151102 (2008). [CrossRef]
  22. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009). [CrossRef]
  23. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, A. Jha, and S. Shen, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Opt. Express14(22), 10452–10459 (2006). [CrossRef] [PubMed]
  24. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11–13), 2241–2245 (2011). [CrossRef]
  25. B. Zhou, H. Lin, and E. Y. B. Pun, “Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 µm wavelength region,” Opt. Express18(18), 18805–18811 (2010). [CrossRef]
  26. B. Zhou, H. Lin, B. Chen, and E. Y. B. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express19(7), 6514–6523 (2011). [CrossRef] [PubMed]
  27. Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+: (3F3, 3F4)→3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett.78(9), 1249–1251 (2001). [CrossRef]
  28. B. Zhou and E. Y. B. Pun, “Superbroadband near-IR emission from praseodymium-doped bismuth gallate glasses,” Opt. Lett.36(15), 2958–2960 (2011). [CrossRef] [PubMed]
  29. P. Nandi, G. Jose, C. Jayakrishnan, S. Debbarma, K. Chalapathi, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, and D. Mathur, “Femtosecond laser written channel waveguides in tellurite glass,” Opt. Express14(25), 12145–12150 (2006). [CrossRef] [PubMed]
  30. B. Zhou, E. Y. B. Pun, H. Lin, D. Yang, and L. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys.106(10), 103105 (2009). [CrossRef]
  31. M. Naftaly, C. Batchelor, and A. Jha, “Pr3+-doped fluoride glass for a 589 nm fiber laser,” J. Lumin.91(3-4), 133–138 (2000). [CrossRef]
  32. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B62(10), 6215–6227 (2000). [CrossRef]
  33. R. Jose, Y. Arai, and Y. Ohishi, “Raman scattering characteristics of the TBSN-based tellurite glass system as a new Raman gain medium,” J. Opt. Soc. Am. B24(7), 1517–1526 (2007). [CrossRef]
  34. V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, “Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties,” J. Non-Cryst. Solids325(1-3), 85–102 (2003). [CrossRef]
  35. G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonic application,” J. Non-Cryst. Solids355(7), 447–452 (2009). [CrossRef]
  36. A. Lin, A. Ryasnyanskiy, and J. Toulouse, “Fabrication and characterization of a water-free mid-infrared fluorotellurite glass,” Opt. Lett.36(5), 740–742 (2011). [CrossRef] [PubMed]
  37. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962). [CrossRef]
  38. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962). [CrossRef]
  39. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys.49(10), 4424–4442 (1968). [CrossRef]
  40. R. T. Génova, I. R. Martin, U. R. Rodriguez-Mendoza, F. Lahoz, A. D. Lozano-Gorrin, P. Nunez, J. Gonzalez-Platas, and V. Lavin, “Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass-ceramic. Applications of the standard and modified Judd-Ofelt theories,” J. Alloy. Comp.380(1-2), 167–172 (2004). [CrossRef]
  41. L. R. Moorthy, M. Jayasimhadri, A. Radhapathy, and R. V. S. S. N. Ravikumar, “Lasing properties of Pr3+-doped tellurofluorophosphate glasses,” Mater. Chem. Phys.93(2-3), 455–460 (2005). [CrossRef]
  42. M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett.6(2), 189–191 (1994). [CrossRef]
  43. M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys.48(10), 4774–4780 (1968). [CrossRef]
  44. T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett.86(13), 131903 (2005). [CrossRef]
  45. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited