OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3814–3824

Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures

Richard Soref, Joshua Hendrickson, and Justin W. Cleary  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 3814-3824 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (911 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Heavily doped n-type Ge and GeSn are investigated as plasmonic conductors for integration with undoped dielectrics of Si, SiGe, Ge, and GeSn in order to create a foundry-based group IV plasmonics technology. N-type Ge1-xSnx with compositions of 0 ≤ x ≤ 0.115 are investigated utilizing effective-mass theory and Drude considerations. The plasma wavelengths, relaxation times, and complex permittivities are determined as functions of the free carrier concentration over the range of 1019 to 1021 cm−3. Basic plasmonic properties such as propagation loss and mode height are calculated and example numerical simulations are shown of a dielectric-conductor-dielectric ribbon waveguide structure are shown. Practical operation in the 2 to 20 μm wavelength range is predicted.

© 2012 OSA

OCIS Codes
(130.3060) Integrated optics : Infrared
(130.5990) Integrated optics : Semiconductors
(160.4670) Materials : Optical materials
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Integrated Optics

Original Manuscript: October 14, 2011
Revised Manuscript: December 5, 2011
Manuscript Accepted: January 10, 2012
Published: February 1, 2012

Richard Soref, Joshua Hendrickson, and Justin W. Cleary, "Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures," Opt. Express 20, 3814-3824 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE7673, 767306, 767306-11 (2010). [CrossRef]
  2. A. M. Crook, H. P. Nair, D. A. Ferrer, and S. R. Bank, “Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures,” Appl. Phys. Lett.99(7), 072120 (2011). [CrossRef]
  3. D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-infrared wavelengths,” Opt. Express19(15), 14594–14603 (2011). [CrossRef] [PubMed]
  4. M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” submitted to J. Appl. Phys. (2011).
  5. J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys.110(4), 043110 (2011). [CrossRef]
  6. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express16(9), 6507–6514 (2008). [CrossRef] [PubMed]
  7. J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B27(4), 730–734 (2010). [CrossRef]
  8. G. Sun, R. A. Soref, and H. H. Cheng, “Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode,” Opt. Express18(19), 19957–19965 (2010). [CrossRef] [PubMed]
  9. S. Y. Cho and R. A. Soref, “Low-loss silicide/silicon plasmonic ribbon waveguides for mid- and far-infrared applications,” Opt. Lett.34(12), 1759–1761 (2009). [CrossRef] [PubMed]
  10. R. Ragan and H. A. Atwater, “Measurement of the direct energy gap of coherently strained SnxGe1-x/Ge(001) heterostructures,” Appl. Phys. Lett.77(21), 3418–3420 (2000). [CrossRef]
  11. V. R. D’Costa, J. Tolle, J. Xie, J. Menendez, and J. Kouvetakis, “Transport properties of doped GeSn alloys,” 2008 29th Int. Conf. on the Physics of Semiconductors (AIP, Rio de Janeiro, 2008).
  12. A. V. G. Chizmeshya, C. Ritter, J. Tolle, C. Cook, J. Menendez, and J. Kouvetakis, “Fundamental studies of P(GeH3)3, and Sb(GeH3)3: practical n-dopants for new group IV semiconductors,” Chem. Mater.18(26), 6266–6277 (2006). [CrossRef]
  13. V. R. D’Costa, J. Tolle, J. Xie, J. Kouvetakis, and J. Menendez, “Infrared dielectric function of p-type Ge0.98 Sn0.02 alloys,” Phys. Rev. B80(12), 125209 (2009). [CrossRef]
  14. B. Van Zeghbroeck, “Detailed description of the effective mass,” in Principles of Semiconductor Devise, http://ece-www.colorado.edu/~bart/book/ (2004).
  15. V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L- telecommunications bands,” Semicond. Sci. Technol.24(11), 115006 (2009). [CrossRef]
  16. J. Xie, J. Tolle, V. R. D’Costa, C. Weng, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular approaches to p- and n- nanoscale doping of Ge1-ySny semiconductors: Structural, electrical and transport properties,” Solid-State Electron.53(8), 816–823 (2009). [CrossRef]
  17. C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron.20(2), 77–89 (1977). [CrossRef]
  18. R. Soref, S.-Y. Cho, W. Buchwald, R. E. Peale, and J. Cleary, “Silicon plasmonic waveguides,” in Silicon Photonics for Telecommunications and Biomedical Applications, S. Fathpour and B. Jalali, eds. (Taylor and Francis, UK, 2011).
  19. S. T. Lim, C. E. Png, E. A. Ong, and Y. L. Ang, “Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,” Opt. Express15(18), 11061–11072 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited