OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3832–3843

Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses

Andrey Okhrimchuk, Vladimir Mezentsev, Alexander Shestakov, and Ian Bennion  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 3832-3843 (2012)
http://dx.doi.org/10.1364/OE.20.003832


View Full Text Article

Enhanced HTML    Acrobat PDF (3091 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.

© 2012 OSA

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: October 24, 2011
Revised Manuscript: December 2, 2011
Manuscript Accepted: December 3, 2011
Published: February 1, 2012

Citation
Andrey Okhrimchuk, Vladimir Mezentsev, Alexander Shestakov, and Ian Bennion, "Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses," Opt. Express 20, 3832-3843 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-3832


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process.76(3), 309–311 (2003). [CrossRef]
  3. L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photon. Technol. Lett.16(5), 1337–1339 (2004). [CrossRef]
  4. A. V. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” Proc. SPIE4941, 51–57 (2003). [CrossRef]
  5. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett.29(22), 2626–2628 (2004). [CrossRef] [PubMed]
  6. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30(17), 2248–2250 (2005). [CrossRef] [PubMed]
  7. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010). [CrossRef] [PubMed]
  8. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminium garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008). [CrossRef]
  9. J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91(15), 151108 (2007). [CrossRef]
  10. A. Okhrimchuk, “Femtosecond fabrication of waveguides in ion-doped laser crystals,” in Coherence and Ultrashort Pulse Laser Emission, F. J. Duarte, ed., (InTech, 2010), pp. 519–542. http://www.intechopen.com/articles/show/title/femtosecond-fabrication-of-waveguides-in-ion-doped-laser-crystals .
  11. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011). [CrossRef] [PubMed]
  12. A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19(7), 1415–1422 (2009). [CrossRef]
  13. A. G. Okhrimchuk, V. K. Mezentsev, V. V. Dvoyrin, A. S. Kurkov, E. M. Sholokhov, S. K. Turitsyn, A. V. Shestakov, and I. Bennion, “Waveguide-saturable absorber fabricated by femtosecond pulses in YAG:Cr4+ crystal for Q-switched operation of Yb-fiber laser,” Opt. Lett.34(24), 3881–3883 (2009). [CrossRef] [PubMed]
  14. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  15. R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys.38(13), 5149–5153 (1967). [CrossRef]
  16. A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett.35(3), 330–332 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited