OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3890–3897

Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector

Peter Fuchs, Jochen Friedl, Sven Höfling, Johannes Koeth, Alfred Forchel, Lukas Worschech, and Martin Kamp  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 3890-3897 (2012)
http://dx.doi.org/10.1364/OE.20.003890


View Full Text Article

Enhanced HTML    Acrobat PDF (1922 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the fabrication of single mode quantum cascade lasers using a shallow-etched distributed Bragg reflector as frequency selective element. Quasi-continuous single mode tuning over 15 cm−1 at room temperature and 25 cm−1 via temperature tuning at Peltier temperatures is demonstrated. The behavior of both electro-optic and spectral characteristics under variation of the segment currents is analyzed, showing a maximum peak output power at room temperature of 600 mW. Thermal crosstalk between the laser segments is investigated. The spectral resolution of a gas absorption experiment is determined to be better than 0.0078 cm−1.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(300.1030) Spectroscopy : Absorption
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 28, 2011
Revised Manuscript: January 6, 2012
Manuscript Accepted: January 16, 2012
Published: February 1, 2012

Citation
Peter Fuchs, Jochen Friedl, Sven Höfling, Johannes Koeth, Alfred Forchel, Lukas Worschech, and Martin Kamp, "Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector," Opt. Express 20, 3890-3897 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-3890


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997). [CrossRef]
  2. C. Gmachl, J. Faist, J. N. Bailargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett.9(8), 1090–1092 (1997). [CrossRef]
  3. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011). [CrossRef]
  4. P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm,” Appl. Phys. Lett.98(21), 211118 (2011). [CrossRef]
  5. R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004). [CrossRef]
  6. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010). [CrossRef]
  7. Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett.97(8), 081115 (2010). [CrossRef]
  8. E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett.98(14), 141101 (2011). [CrossRef]
  9. L. Hvozdara, A. Lugstein, S. Gianordoli, W. Schrenk, G. Strasser, K. Unterrainer, E. Bertagnolli, and E. Gornik, “Self-aligned coupled cavity GaAs/AlGaAs midinfrared quantum-cascade laser,” Appl. Phys. Lett.77(8), 1077–1079 (2000). [CrossRef]
  10. P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett.97(18), 181111 (2010). [CrossRef]
  11. Y. Wakayama, S. Iwamoto, and Y. Arakawa, “Switching operation of lasing wavelength in mid-infrared ridge-waveguide quantum cascade lasers coupled with microcylindrical cavity,” Appl. Phys. Lett.96(17), 171104 (2010). [CrossRef]
  12. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007). [CrossRef]
  13. J. Semmel, L. Nähle, S. Höfling, and A. Forchel, “Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals,” Appl. Phys. Lett.91(7), 071104 (2007). [CrossRef]
  14. S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett.89(4), 041115 (2006). [CrossRef]
  15. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, 1995), Chap. 3.
  16. T. Beyer, M. Braun, and A. Lambrecht, “Fast gas spectroscopy using pulsed quantum cascade lasers,” J. Appl. Phys.93(6), 3158–3160 (2003). [CrossRef]
  17. The HITRAN database, http://www.cfa.hitran.com/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited