OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3997–4008

Thermally induced waveguide changes in active fibers

Florian Jansen, Fabian Stutzki, Hans-Jürgen Otto, Tino Eidam, Andreas Liem, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 3997-4008 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1483 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thermally induced waveguide changes become significant for very large mode area fibers. This results in a reduction of the mode-field diameter, but simultaneously in an improvement of the beam quality. In this work the first systematic experimental characterization of the reduction of the mode-field diameter in various fibers during high-power operation is carried out. It is shown that the reduction of the mode-field diameter shows a characteristic behavior that scales with the core size but that is independent of the particular fiber design. Furthermore, the strength of the actual index change is experimentally estimated, and its use to overcome avoided crossings is discussed and experimentally demonstrated.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(140.6810) Lasers and laser optics : Thermal effects
(350.6830) Other areas of optics : Thermal lensing
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 28, 2011
Revised Manuscript: January 5, 2012
Manuscript Accepted: January 18, 2012
Published: February 2, 2012

Florian Jansen, Fabian Stutzki, Hans-Jürgen Otto, Tino Eidam, Andreas Liem, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann, "Thermally induced waveguide changes in active fibers," Opt. Express 20, 3997-4008 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett.23(1), 52–54 (1998). [CrossRef] [PubMed]
  2. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, “Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers,” Opt. Lett.30(21), 2855–2857 (2005). [CrossRef] [PubMed]
  3. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express14(7), 2715–2720 (2006). [CrossRef] [PubMed]
  4. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011). [CrossRef] [PubMed]
  5. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011). [CrossRef] [PubMed]
  6. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011). [CrossRef] [PubMed]
  7. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19(11), 10180–10192 (2011). [CrossRef] [PubMed]
  8. D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001). [CrossRef]
  9. S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express14(13), 6091–6097 (2006). [CrossRef] [PubMed]
  10. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16(17), 13240–13266 (2008). [CrossRef] [PubMed]
  11. F. Jansen, F. Stutzki, H.-J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express18(26), 26834–26842 (2010). [CrossRef] [PubMed]
  12. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express19(24), 23965–23980 (2011). [CrossRef] [PubMed]
  13. J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, and M. J. F. Digonnet, “Experimental and theoretical analysis of the resonant nonlinearity in Ytterbium-Doped fiber,” J. Lightwave Technol.16, 798–806 (1998).
  14. A. A. Fotiadi, O. L. Antipov, and P. Megret, “Resonantly Induced Refractive Index Changes in Yb-Doped Fibers: The Origin, Properties and Application for all-fiber Coherent Beam Combining,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, 2010), pp. 209–234.
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  16. F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Avoided crossings in photonic crystal fibers,” Opt. Express19(14), 13578–13589 (2011). [CrossRef] [PubMed]
  17. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express19(1), 255–260 (2011). [CrossRef] [PubMed]
  18. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Tech. Rep. arXiv:0805.0091 (2008).
  19. J. M. Fini, “Large mode area fibers with asymmetric bend compensation,” Opt. Express19(22), 21866–21873 (2011). [CrossRef] [PubMed]
  20. K. E. Mattsson, “Low photo darkening single mode RMO fiber,” Opt. Express17(20), 17855–17861 (2009). [CrossRef] [PubMed]
  21. E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-Core Photonic Bandgap Fibers for High-Power Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron.15(1), 20–29 (2009), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4773297&isnumber=4773293 . [CrossRef]
  22. T. T. Alkeskjold, M. Laurila, L. Scolari, and J. Broeng, “Single-Mode ytterbium-doped Large-Mode-Area photonic bandgap rod fiber amplifier,” Opt. Express19(8), 7398–7409 (2011). [CrossRef] [PubMed]
  23. C.-H. Liu, G. Chang, N. Litchinitser, D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” in Conference on Lasers and Electro-Optics CLEO (2007), paper CTuBB3, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4452926&isnumber=4452320 .
  24. J. West, C. Smith, N. Borrelli, D. Allan, and K. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express12(8), 1485–1496 (2004). [CrossRef] [PubMed]
  25. L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending Effective Area of Fundamental Mode in Optical Fibers,” J. Lightwave Technol.27(11), 1565–1570 (2009). [CrossRef]
  26. F. Poli, E. Coscelli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, and S. Selleri, “Cut-off analysis of 19-cell Yb-doped double-cladding rod-type photonic crystal fibers,” Opt. Express19(10), 9896–9907 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited