OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4024–4031

Single-layer resonant-waveguide grating for polarization and wavelength selection in Yb:YAG thin-disk lasers

Moritz M. Vogel, Martin Rumpel, Birgit Weichelt, Andreas Voss, Matthias Haefner, Christof Pruss, Wolfgang Osten, Marwan Abdou Ahmed, and Thomas Graf  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4024-4031 (2012)
http://dx.doi.org/10.1364/OE.20.004024


View Full Text Article

Enhanced HTML    Acrobat PDF (1856 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A single-layer resonant-waveguide grating consisting of a sub-wavelength grating coupler etched into a waveguide is proposed in order to achieve high polarization and high spectral selectivity inside an Yb:YAG thin-disk laser resonator. The designed structure was fabricated with the help of a Lloyd’s-mirror interference lithography setup followed by reactive ion beam etching down to the desired grating groove depth. The wavelength and polarization dependent reflectivity is measured and compared to the design results. The behaviour of the device at higher temperatures is also investigated in the present work. The device is introduced as the end mirror of an Yb:YAG thin-disk laser cavity. Output powers of up to 123 W with a spectral bandwidth of about 0.5 nm (FWHM) is demonstrated in a multimode configuration (M2~6). In fundamental-mode operation (TEM00 with M2~1.1) 70 W of power with a spectral bandwidth of about 20 pm have been obtained. Moreover, the degree of linear polarization was measured to be higher than 99% for both multimode and fundamental mode operation.

© 2012 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(140.3615) Lasers and laser optics : Lasers, ytterbium
(050.6624) Diffraction and gratings : Subwavelength structures
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 2, 2011
Revised Manuscript: January 4, 2012
Manuscript Accepted: January 5, 2012
Published: February 2, 2012

Citation
Moritz M. Vogel, Martin Rumpel, Birgit Weichelt, Andreas Voss, Matthias Haefner, Christof Pruss, Wolfgang Osten, Marwan Abdou Ahmed, and Thomas Graf, "Single-layer resonant-waveguide grating for polarization and wavelength selection in Yb:YAG thin-disk lasers," Opt. Express 20, 4024-4031 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4024


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. A. Sychugov, A. V. Tishchenko, N. M. Lyndin, and O. Parriaux, “Waveguide coupling gratings for high-sensitivity biochemical sensors,” Sens. Actuators B Chem.39(1-3), 360–364 (1997). [CrossRef]
  2. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993). [CrossRef] [PubMed]
  3. S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sidebands,” Opt. Lett.19(12), 919–921 (1994). [CrossRef] [PubMed]
  4. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A14(7), 1617–1626 (1997). [CrossRef]
  5. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectrique waveguide,” Sov. J. Quantum Electron.15(7), 886–887 (1985). [CrossRef]
  6. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt.36(11), 1527–1539 (1989). [CrossRef]
  7. V. A. Sychugov and A. V. Tishchenko, “Light emission from a corrugated dielectric waveguide,” Quantum Electron.10, 326–331 (1980).
  8. A. Avrutskiǐ, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with corrugated waveguide on its surface,” Sov. J. Quantum Electron.16(8), 1063–1065 (1986). [CrossRef]
  9. P. Vincent and M. Nevière, “Corrugated Dielectric Waveguides: a numerical study of the second-order stop bands,” Appl. Phys. (Berl.)20(4), 345–351 (1979). [CrossRef]
  10. E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.)33(5), 607–619 (1986). [CrossRef]
  11. J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris)11, 235–241 (1980).
  12. L. Li, “Multilayer-coated diffraction gratings: differential method of Chandezon et al. revisited,” J. Opt. Soc. Am. A11(11), 2816–2828 (1994). [CrossRef]
  13. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A14(11), 2985–2993 (1997). [CrossRef]
  14. A. V. Tishchenko, “A generalised source method: new possibilities for waveguide and grating problems,” Opt. Quantum Electron.32, 971–980 (2000). [CrossRef]
  15. L. B. Mashev and E. G. Loewen, “Anomalies of all-dielectric multilayer coated reflection gratings as a function of groove profile: an experimental study,” Appl. Opt.27(1), 31–32 (1988). [CrossRef] [PubMed]
  16. O. Boyko, F. Lemarchand, A. Talneau, A.-L. Fehrembach, and A. Sentenac, “Experimental demonstration of ultrasharp unpolarized filtering by resonant gratings at oblique incidence,” J. Opt. Soc. Am. A26(3), 676–679 (2009). [CrossRef]
  17. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett.23(15), 1149–1151 (1998). [CrossRef] [PubMed]
  18. O. Parriaux and G. J. Veldhuis, “Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors,” J. Lightwave Technol.16(4), 573–582 (1998). [CrossRef]
  19. S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguide structures,” Opt. Lett.29(17), 1989–1991 (2004). [CrossRef] [PubMed]
  20. V. Brioude, R. Saoudi, D. Blanc, S. Reynaud, S. Tonchev, N. M. Lyndin, and J. Molloy, “Resonant grating biosensor platform design and fabrication,” Proc. SPIE5252, 209–216 (2004). [CrossRef]
  21. V. N. Bel'tyugov, S. G. Protsenko, and Y. V. Troitski, “Polarizing laser mirrors for normal light incidence,” Proc. SPIE1782, 206–211 (1993). [CrossRef]
  22. M. A. Ahmed, T. Moser, F. Pigeon, O. Parriaux, and Th. Graf, “Intra-cavity polarizing element for Nd:YAG laser,” Laser Phys. Lett.3, 129–131 (2006).
  23. N. Destouches, J. C. Pommier, O. Parriaux, T. Clausnitzer, N. M. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express14(26), 12613–12622 (2006). [CrossRef] [PubMed]
  24. M. Abdou Ahmed, J. Schulz, A. Voss, O. Parriaux, J. C. Pommier, and Th. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett.32, 1824–1826 (2007). [CrossRef] [PubMed]
  25. F. Brückner, D. Friedrich, T. Clausnitzer, O. Burmeister, M. Britzger, E. B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, “Demonstration of a cavity coupler based on a resonant waveguide grating,” Opt. Express17(1), 163–169 (2009). [CrossRef] [PubMed]
  26. M. A. Ahmed, M. Haefner, M. M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, “High-power radially polarized Yb:YAG thin-disk laser with high efficiency,” Opt. Express19(6), 5093–5104 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited