OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4039–4049

Three-dimensional structure of a single colloidal crystal grain studied by coherent x-ray diffraction

J. Gulden, O. M. Yefanov, A. P. Mancuso, R. Dronyak, A. Singer, V. Bernátová, A. Burkhardt, O. Polozhentsev, A. Soldatov, M. Sprung, and I. A. Vartanyants  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 4039-4049 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1850 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A coherent x-ray diffraction experiment was performed on an isolated colloidal crystal grain at the coherence beamline P10 at PETRA III. Using azimuthal rotation scans the three-dimensional (3D) scattered intensity from the sample in the far-field was measured. It includes several Bragg peaks as well as the coherent interference around these peaks. The analysis of the scattered intensity reveals the presence of plane defects in a single grain of the colloidal sample. We confirm these findings by model simulations. In these simulations we also analyze the experimental conditions required to phase the 3D diffraction pattern from a single colloidal grain. This approach has the potential to produce a high resolution image of the sample revealing its inner structure, with possible structural defects.

© 2012 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(100.5070) Image processing : Phase retrieval
(340.7460) X-ray optics : X-ray microscopy
(160.5298) Materials : Photonic crystals

ToC Category:
X-ray Optics

Original Manuscript: December 15, 2011
Revised Manuscript: January 20, 2012
Manuscript Accepted: January 20, 2012
Published: February 2, 2012

J. Gulden, O. M. Yefanov, A. P. Mancuso, R. Dronyak, A. Singer, V. Bernátová, A. Burkhardt, O. Polozhentsev, A. Soldatov, M. Sprung, and I. A. Vartanyants, "Three-dimensional structure of a single colloidal crystal grain studied by coherent x-ray diffraction," Opt. Express 20, 4039-4049 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Giacovazzo, H. L. Monaco, G. Artioli, D. Viterbo, G. Ferraris, G. Gilli, G. Zanotti, and M. Catti, Fundamentals of Crystallography (Oxford University Press, 2002).
  2. D. Sayre, “The squaring method: a new method for phase determination,” Acta Crystallogr.5(1), 60–65 (1952). [CrossRef]
  3. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature400(6742), 342–344 (1999). [CrossRef]
  4. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  5. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A20(1), 40–55 (2003). [CrossRef] [PubMed]
  6. K. A. Nugent, “Coherent methods in the x-ray sciences,” Adv. Phys.59(1), 1–99 (2010). [CrossRef]
  7. A. P. Mancuso, O. M. Yefanov, and I. A. Vartanyants, “Coherent diffractive imaging of biological samples at synchrotron and free electron laser facilities,” J. Biotechnol.149(4), 229–237 (2010). [CrossRef] [PubMed]
  8. G. J. Williams, M. A. Pfeifer, I. A. Vartanyants, and I. K. Robinson, “Three-dimensional imaging of microstructure in Au nanocrystals,” Phys. Rev. Lett.90(17), 175501 (2003). [CrossRef] [PubMed]
  9. M. A. Pfeifer, G. J. Williams, I. A. Vartanyants, R. Harder, and I. K. Robinson, “Three-dimensional mapping of a deformation field inside a nanocrystal,” Nature442(7098), 63–66 (2006). [CrossRef] [PubMed]
  10. I. Robinson and R. Harder, “Coherent X-ray diffraction imaging of strain at the nanoscale,” Nat. Mater.8(4), 291–298 (2009). [CrossRef] [PubMed]
  11. J. Gulden, O. M. Yefanov, A. P. Mancuso, V. V. Abramova, J. Hilhorst, D. Byelov, I. Snigireva, A. Snigirev, A. V. Petukhov, and I. A. Vartanyants, “Coherent x-ray imaging of defects in colloidal crystals,” Phys. Rev. B81(22), 224105 (2010). [CrossRef]
  12. A. Bosak, I. Snigireva, K. S. Napolskii, and A. Snigirev, “High-resolution transmission X-ray microscopy: A new tool for mesoscopic materials,” Adv. Mater. (Deerfield Beach Fla.)22(30), 3256–3259 (2010). [CrossRef] [PubMed]
  13. M. M. van Schooneveld, J. Hilhorst, A. V. Petukhov, T. Tyliszczak, J. Wang, B. M. Weckhuysen, F. M. F. de Groot, and E. de Smit, “Scanning transmission x-ray microscopy as a novel tool to probe colloidal and photonic crystals,” Small7(6), 804–811 (2011). [CrossRef] [PubMed]
  14. N. A. M. Verhaegh, J. S. van Duijneveldt, A. van Blaaderen, and H. N. W. Lekkerkerker, “Direct observation of stacking disorder in a colloidal crystal,” J. Chem. Phys.102(3), 1416–1422 (1995). [CrossRef]
  15. S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000). [CrossRef] [PubMed]
  16. J. Smajic, C. Hafner, and D. Erni, “Design and optimization of an achromatic photonic crystal bend,” Opt. Express11(12), 1378–1384 (2003). [CrossRef] [PubMed]
  17. Yu. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, “Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics61(5), 5784–5793 (2000). [CrossRef] [PubMed]
  18. V. Yannopapas, N. Stefanou, and A. Modinos, “Effect of stacking faults on the optical properties of inverted opals,” Phys. Rev. Lett.86(21), 4811–4814 (2001). [CrossRef] [PubMed]
  19. R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, “Effect of disorder on the optical properties of colloidal crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 016615 (2005). [CrossRef] [PubMed]
  20. J. Hilhorst, V. V. Abramova, A. Sinitskii, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, D. V. Byelov, N. A. Grigoryeva, A. V. Vasilieva, W. G. Bouwman, K. Kvashnina, A. Snigirev, S. V. Grigoriev, and A. V. Petukhov, “Double stacking faults in convectively assembled crystals of colloidal spheres,” Langmuir25(17), 10408–10412 (2009). [CrossRef] [PubMed]
  21. For the Coherence Beamline P10 description see: http://hasylab.desy.de/facilities/petra_iii/beamlines/p10_coherence_applications/index_eng.html .
  22. N. A. M. Verhaegh and A. van Blaaderen, “Dispersions of Rhodamine-labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning Laser microscopy,” Langmuir10(5), 1427–1438 (1994). [CrossRef]
  23. A. V. Petukhov, I. P. Dolbnya, D. G. A. L. Aarts, and G. J. Vroege, “Destruction of long-range order recorded with in situ small-angle x-ray diffraction in drying colloidal crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 031405 (2004). [CrossRef] [PubMed]
  24. A. V. Petukhov, I. P. Dolbnya, D. G. Aarts, G. J. Vroege, and H. N. W. Lekkerkerker, “Bragg Rods and multiple X-ray scattering in random-stacking colloidal crystals,” Phys. Rev. Lett.90(2), 028304 (2003). [CrossRef] [PubMed]
  25. A. P. Mancuso, A. Schropp, B. Reime, L. M. Stadler, A. Singer, J. Gulden, S. Streit-Nierobisch, C. Gutt, G. Grübel, J. Feldhaus, F. Staier, R. Barth, A. Rosenhahn, M. Grunze, T. Nisius, T. Wilhein, D. Stickler, H. Stillrich, R. Frömter, H. P. Oepen, M. Martins, B. Pfau, C. M. Günther, R. Könnecke, S. Eisebitt, B. Faatz, N. Guerassimova, K. Honkavaara, V. Kocharyan, R. Treusch, E. Saldin, S. Schreiber, E. A. Schneidmiller, M. V. Yurkov, E. Weckert, and I. A. Vartanyants, “Coherent-pulse 2D crystallography using a free-electron laser x-ray source,” Phys. Rev. Lett.102(3), 035502 (2009). [CrossRef] [PubMed]
  26. X. Lu, S. G. J. Mochrie, S. Narayanan, A. R. Sandy, and M. Sprung, “How a liquid becomes a glass both on cooling and on heating,” Phys. Rev. Lett.100(4), 045701 (2008). [CrossRef] [PubMed]
  27. I. A. Vartanyants, A. V. Zozulya, K. Mundboth, O. M. Yefanov, M. I. Richard, E. Wintersberger, J. Stangl, A. Diaz, C. Mocuta, T. H. Metzger, G. Bauer, T. Boeck, and M. Schmidbauer, “Crystal truncation planes revealed by three-dimensional reconstruction of reciprocal space,” Phys. Rev. B77(11), 115317 (2008). [CrossRef]
  28. B. E. Warren, X-Ray Diffraction (Dover Publications Inc., 1990).
  29. I. A. Vartanyants and I. K. Robinson, “Partial coherence effects on the imaging of small crystals using coherent x-ray diffraction,” J. Phys. Condens. Matter13(47), 10593–10611 (2001). [CrossRef]
  30. P. Thibault, V. Elser, C. Jacobsen, D. Shapiro, and D. Sayre, “Reconstruction of a yeast cell from X-ray diffraction data,” Acta Crystallogr. A62(4), 248–261 (2006). [CrossRef] [PubMed]
  31. S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Phys. Rev. B68(14), 140101 (2003). [CrossRef]
  32. X. Huang, H. Miao, J. Steinbrener, J. Nelson, D. Shapiro, A. Stewart, J. Turner, and C. Jacobsen, “Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy,” Opt. Express17(16), 13541–13553 (2009). [CrossRef] [PubMed]
  33. Y. Nishino, J. Miao, and T. Ishikawa, “Image reconstruction of nanostructured nonperiodic objects only from oversampled hard x-ray diffraction intensities,” Phys. Rev. B68(22), 220101 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MPEG (2262 KB)     
» Media 2: MPEG (4846 KB)     
» Media 3: MPEG (4180 KB)     
» Media 4: MPEG (3024 KB)     
» Media 5: MPEG (4230 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited