OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4085–4101

Ultrafast nonlinear optical studies of silicon nanowaveguides

Ali R. Motamedi, Amir H. Nejadmalayeri, Anatol Khilo, Franz X. Kärtner, and Erich P. Ippen  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4085-4101 (2012)
http://dx.doi.org/10.1364/OE.20.004085


View Full Text Article

Enhanced HTML    Acrobat PDF (1894 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Results of a self-consistent ultrafast study of nonlinear optical properties of silicon nanowaveguides using heterodyne pump-probe technique are reported. The two-photon absorption coefficient and free-carrier absorption effective cross-section were determined to be 0.68cm/GW, and 1.9x10−17 cm2, respectively and the Kerr coefficient and free-carrier-induced refractive index change 0.32x10−13 cm2/W, and −5.5x10−21 cm3, respectively. The effects of the proton bombardment on the linear loss and the carrier lifetime of the devices were also studied. Carrier lifetime reduction from 330ps to 33ps with a linear loss of only 14.8dB/cm was achieved using a proton bombardment level of 1015/cm2.

© 2012 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(320.7100) Ultrafast optics : Ultrafast measurements
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 13, 2011
Revised Manuscript: January 26, 2012
Manuscript Accepted: January 27, 2012
Published: February 2, 2012

Citation
Ali R. Motamedi, Amir H. Nejadmalayeri, Anatol Khilo, Franz X. Kärtner, and Erich P. Ippen, "Ultrafast nonlinear optical studies of silicon nanowaveguides," Opt. Express 20, 4085-4101 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4085


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Englund, H. Altug, B. Ellis, and J. Vučković, “Ultrafast photonic crystal lasers,” Laser Photon. Rev.2(4), 264–274 (2008). [CrossRef]
  2. N. Fujioka, T. Chu, and M. Ishizaka, “Compact and low power consumption hybrid integrated wavelength tunable laser module using silicon waveguide resonators,” J. Lightwave Technol.28, 3115–3120 (2010).
  3. H. Ji, M. Galili, H. Hu, M. H. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett.22(23), 1762–1764 (2010). [CrossRef]
  4. G. L. Li, X. Z. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, P. Dong, D. Z. Feng, S. R. Liao, R. Shafiiha, M. Asghari, J. Yao, J. Shi, I. N. Shubin, D. Patil, F. Liu, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-power silicon photonic interconnect for high-performance computing systems,” Optoelectronic Interconnects and Component Integration IX7607, 760703 (2010).
  5. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006). [CrossRef]
  6. B. Jalali, “Silicon photonics nonlinear optics in the mid-infrared,” Nat. Photonics4(8), 506–508 (2010). [CrossRef]
  7. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010). [CrossRef]
  8. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  9. H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol.23(6), 064007 (2008). [CrossRef]
  10. F. X. Kärtner, S. Akiyama, G. Barbastathis, T. Barwicz, H. Byun, D. T. Danielson, F. Gan, F. Grawert, C. W. Holzwarth, J. L. Hoyt, E. P. Ippen, M. Kim, L. C. Kimerling, J. Liu, J. Michel, O. O. Olubuyide, J. S. Orcutt, M. Park, M. Perrott, M. A. Popovic, P. T. Rackich, R. J. Ram, H. I. Smith, and M. R. Watts, “Electronic photonic integrated circuits for high speed, high resolution, analog to digital conversion,” Proc. SPIE6125, 612503, 612503-14 (2006). [CrossRef]
  11. A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, H. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, H. Park, J. Bovington, S. Lee, H. Nguyen, H. Au, K. Nguyen, P. Merani, M. Hakami, and M. Paniccia, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics, (Optical Society of America, 2010), paper PDIWI5 (2010).
  12. D. A. B. Miller, “Optical interconnects to electronic chips,” Appl. Opt.49(25), F59–F70 (2010). [CrossRef] [PubMed]
  13. M. Khorasaninejad and S. S. Saini, “All-optical logic gates using nonlinear effects in silicon-on-insulator waveguides,” Appl. Opt.48(25), F31–F37 (2009). [CrossRef] [PubMed]
  14. J. Y. Lee, L. H. Yin, G. P. Agrawal, and P. M. Fauchet, “Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides,” Opt. Express18(11), 11514–11523 (2010). [CrossRef] [PubMed]
  15. A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett.10(4), 1506–1511 (2010). [CrossRef] [PubMed]
  16. Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express14(24), 11721–11726 (2006). [CrossRef] [PubMed]
  17. Q. F. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express15(3), 924–929 (2007). [CrossRef] [PubMed]
  18. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech.49(10), 1840–1853 (2001). [CrossRef]
  19. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express15(5), 1955–1982 (2007). [CrossRef] [PubMed]
  20. F. X. Kartner, R. Amatya, M. Araghchini, J. Birge, H. Byun, J. Chen, M. Dahlem, N. A. DiLello, F. Gan, C. W. Holzwarth, J. L. Hoyt, E. P. Ippen, A. Khilo, J. Kim, M. Kim, A. Motamedi, J. S. Orcutt, M. Park, M. Perrott, M. A. Popovi, R. J. Ram, H. I. Smith, G. R. Zhou, S. J. Spector, T. M. Lyszczarz, M. W. Geis, D. M. Lennon, J. U. Yoon, M. E. Grein, and R. T. Schulein, “Photonic analog-to-digital conversion with electronic-photonic integrated circuits,” Proc. SPIE6898, 689806, 689806-15 (2008). [CrossRef]
  21. A. H. Nejadmalayeri, M. Grein, A. Khilo, J. P. Wang, M. Y. Sander, M. Peng, C. M. Sorace, E. P. Ippen, and F. X. Kärtner, “A 16-fs aperture-jitter photonic ADC: 7.0 ENOB at 40 GHz,” in Lasers and Electro-Optics (CLEO), CHTI6 (2011).
  22. M. E. Grein, S. J. Spector, A. Khilo, A. H. Najadmalayeri, M. Y. Sander, M. Peng, J. Wang, C. M. Sorace, M. W. Geis, M. M. Willis, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Demonstration of a 10 GHz CMOS-compatible integrated photonic analog-to-digital converter,” in Lasers and Electro-Optics (CLEO), CHTI1 (2011).
  23. M. A. Popovic, T. Barwicz, M. S. Dahlem, F. W. Gan, C. W. Holzwarth, P. T. Rakich, M. R. Watts, H. I. Smith, F. X. Kärtner, and E. P. Ippen, “Hitless-reconfigurable and bandwidth-scalable silicon photonic circuits for telecom and interconnect applications,” in 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, 2296–2298 (2008).
  24. J. S. Orcutt, A. Khilo, M. A. Popovic, C. W. Holzwarth, H. Li, J. Sun, B. Moss, M. S. Dahlem, E. P. Ippen, J. L. Hoyt, V. Stojanovic, F. X. Kärtner, H. I. Smith, and R. J. Ram, “Photonic integration in a commercial scaled bulk-CMOS process,” in International Conference on Photonics in Switching 2009, 170–171 (2009).
  25. C. W. Holzwarth, A. Khilo, M. Dahlem, M. A. Popovic, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Device architecture and precision nanofabrication of microring-resonator filter banks for integrated photonic systems,” J. Nanosci. Nanotechnol.10(3), 2044–2052 (2010). [CrossRef] [PubMed]
  26. A. Khilo, M. A. Popović, M. Araghchini, and F. X. Kärtner, “Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution,” Opt. Express18(15), 15790–15806 (2010). [CrossRef] [PubMed]
  27. C. R. Doerr, P. J. Winzer, Y.-K. Chen, S. Chandrasekhar, M. S. Rasras, L. Chen, T.-Y. Liow, K.-W. Ang, and G.-Q. Lo, “Monolithic polarization and phase diversity coherent receiver in silicon,” J. Lightwave Technol.28(4), 520–525 (2010). [CrossRef]
  28. T. Barwicz, M. A. Popovi, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE6872, 68720Z, 68720Z-12 (2008). [CrossRef]
  29. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010). [CrossRef]
  30. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  31. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express13(8), 3129–3135 (2005). [CrossRef] [PubMed]
  32. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron.16(1), 159–164 (2010). [CrossRef]
  33. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett.32(4), 391–393 (2007). [CrossRef] [PubMed]
  34. K. L. Hall, G. Lenz, E. P. Ippen, and G. Raybon, “Heterodyne pump - probe technique for time-domain studies of optical nonlinearities in waveguides,” Opt. Lett.17(12), 874–876 (1992). [CrossRef] [PubMed]
  35. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express18(4), 3582–3591 (2010). [CrossRef] [PubMed]
  36. P. Apiratikul, A. M. Rossi, and T. E. Murphy, “Nonlinearities in porous silicon optical waveguides at 1550 nm,” Opt. Express17(5), 3396–3406 (2009). [CrossRef] [PubMed]
  37. K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett.92(15), 151104 (2008). [CrossRef]
  38. P. G. Coleman, C. P. Burrows, and A. P. Knights, “Simple expression for vacancy concentrations at half ion range following MeV ion implantation of silicon,” Appl. Phys. Lett.80(6), 947–949 (2002). [CrossRef]
  39. P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect-engineered silicon rib waveguides,” J. Appl. Phys.99(7), 073101 (2006). [CrossRef]
  40. A. P. Knights and G. F. Hopper, “Effect of ion implantation induced defects on optical attenuation in silicon waveguides,” Electron. Lett.39(23), 1648–1649 (2003). [CrossRef]
  41. D. Dimitropoulos, S. Fathpour, and B. Jalali, “Limitations of active carrier removal in silicon Raman amplifiers and lasers,” Appl. Phys. Lett.87(26), 261108 (2005). [CrossRef]
  42. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express15(10), 5976–5990 (2007). [CrossRef] [PubMed]
  43. M. Popovic, “Complex-frequency leaky mode computations using PML boundary layers for dielectric resonant structures,” in OSA Trends in Optics and Photonics (Optical Society of America, 2003), ITuD4 (2003).
  44. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley-Interscience, 2007).
  45. N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification for silicon waveguide based devices,” in Group IV Photonics, 2008 5th IEEE International Conference on, 122–124 (2008).
  46. J. K. Doylend, P. E. Jessop, and A. P. Knights, “Optical attenuation in ion-implanted silicon waveguide racetrack resonators,” Opt. Express19(16), 14913–14918 (2011). [CrossRef] [PubMed]
  47. A. R. Motamedi, J. J. Plant, J. P. Donnelly, P. W. Juodawlkis, and E. P. Ippen, “Ultrafast nonlinearities and gain dynamics in high-power semiconductor amplifiers,” Appl. Phys. Lett.93(25), 251106 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited