OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4114–4123

D-Scan measurement of ablation threshold incubation effects for ultrashort laser pulses

Leandro Matiolli Machado, Ricardo Elgul Samad, Wagner de Rossi, and Nilson Dias Vieira Junior  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 4114-4123 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (959 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the validation of the Diagonal Scan (D-Scan) technique to determine the incubation parameter for ultrashort laser pulses ablation. A theory to calculate the laser pulses superposition and a procedure for quantifying incubation effects are described, and the results obtained for BK7 samples in the 100 fs regime are compared to the ones given by the traditional method, showing a good agreement.

© 2012 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4670) Materials : Optical materials
(220.4610) Optical design and fabrication : Optical fabrication
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Ultrafast Optics

Original Manuscript: November 22, 2011
Revised Manuscript: January 27, 2012
Manuscript Accepted: January 31, 2012
Published: February 3, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Leandro Matiolli Machado, Ricardo Elgul Samad, Wagner de Rossi, and Nilson Dias Vieira Junior, "D-Scan measurement of ablation threshold incubation effects for ultrashort laser pulses," Opt. Express 20, 4114-4123 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10(3), 375–386 (1974). [CrossRef]
  2. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in Si02 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994). [CrossRef]
  3. J. Reif and F. Costache, “Femtosecond laser interaction with solid surfaces: explosive ablation and self-assembly of ordered nanostructures,” in Advances in Atomic Molecular, and Optical Physics, V. 53, G. Rempe and M. O. Scully, eds. (Elsevier Academic Press Inc, 2006), pp. 227–251.
  4. R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002). [CrossRef] [PubMed]
  5. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999). [CrossRef]
  6. W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996). [CrossRef]
  7. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys, JETP-USSR 20, 1307–1314 (1965).
  8. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998). [CrossRef]
  9. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003). [CrossRef]
  10. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997). [CrossRef]
  11. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002). [CrossRef]
  12. F. Costache, S. Eckert, and J. Reif, “Near-damage threshold femtosecond laser irradiation of dielectric surfaces: desorbed ion kinetics and defect dynamics,” Appl. Phys., A Mater. Sci. Process. 92(4), 897–902 (2008). [CrossRef]
  13. M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005). [CrossRef]
  14. L. C. Courrol, R. E. Samad, L. Gomez, I. M. Ranieri, S. L. Baldochi, A. Zanardi de Freitas, and N. D. Vieira, “Color center production by femtosecond pulse laser irradiation in LiF crystals,” Opt. Express 12(2), 288–293 (2004). [CrossRef] [PubMed]
  15. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999). [CrossRef]
  16. S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003). [CrossRef]
  17. Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B 5(3), 648–659 (1988). [CrossRef]
  18. Y. C. Lim, P. E. Boukany, D. F. Farson, and L. J. Lee, “Direct-write femtosecond laser ablation and DNA combing and imprinting for fabrication of a micro/nanofluidic device on an ethylene glycol dimethacrylate polymer,” J. Micromech. Microeng. 21(1), 015012 (2011). [CrossRef]
  19. D. Gomez and I. Goenaga, “On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: Broadening effects when machining microchannels,” Appl. Surf. Sci. 253(4), 2230–2236 (2006). [CrossRef]
  20. H. W. Choi, D. F. Farson, J. Bovatsek, A. Arai, and D. Ashkenasi, “Direct-write patterning of indium-tin-oxide film by high pulse repetition frequency femtosecond laser ablation,” Appl. Opt. 46(23), 5792–5799 (2007). [CrossRef] [PubMed]
  21. J. Bonse, J. M. Wrobel, J. Krüger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001). [CrossRef]
  22. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982). [CrossRef] [PubMed]
  23. R. E. Samad and N. D. Vieira., “Geometrical method for determining the surface damage threshold for femtosecond laser pulses,” Laser Phys. 16(2), 336–339 (2006). [CrossRef]
  24. R. E. Samad, S. L. Baldochi, and N. D. Vieira., “Diagonal scan measurement of Cr:LiSAF 20 ps ablation threshold,” Appl. Opt. 47(7), 920–924 (2008). [CrossRef] [PubMed]
  25. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5(10), 1550–1567 (1966). [CrossRef] [PubMed]
  26. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, 10th printing, with corrections. ed., United States National Bureau of Standards Applied mathematics series (U.S. Govt. Print. Off., 1972).
  27. Wolfram Research Inc, “Jacobi theta function ϑ3” (1998–2011), retrieved 2011, http://functions.wolfram.com/EllipticFunctions/EllipticTheta3/06/01/03/ .
  28. A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316 (2004). [CrossRef]
  29. N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited