OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4136–4148

VECSEL gain characterization

Mario Mangold, Valentin J. Wittwer, Oliver D. Sieber, Martin Hoffmann, Igor L. Krestnikov, Daniil A. Livshits, Matthias Golling, Thomas Südmeyer, and Ursula Keller  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4136-4148 (2012)
http://dx.doi.org/10.1364/OE.20.004136


View Full Text Article

Enhanced HTML    Acrobat PDF (1115 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the first full gain characterization of two vertical external cavity surface emitting laser (VECSEL) gain chips with similar designs operating in the 960-nm wavelength regime. We optically pump the structures with continuous-wave (cw) 808-nm radiation and measure the nonlinear reflectivity for 130-fs and 1.4-ps probe pulses as function of probe pulse fluence, pump power, and heat sink temperature. With this technique we are able to measure the saturation behavior for VECSEL gain chips for the first time. The characterization with 1.4-ps pulses resulted in saturation fluences of 40-80 μJ/cm2, while probing with 130-fs pulses yields reduced saturation fluences of 30-50 μJ/cm2 for both structures. For both pulse durations this is lower than previously assumed. A small-signal gain of up to 5% is obtained with this technique. Furthermore, in a second measurement setup, we characterize the spectral dependence of the gain using a tunable cw probe beam. We measure a gain bandwidth of over 26 nm for both structures, full width at half maximum.

© 2012 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 2, 2011
Revised Manuscript: January 19, 2012
Manuscript Accepted: January 20, 2012
Published: February 3, 2012

Citation
Mario Mangold, Valentin J. Wittwer, Oliver D. Sieber, Martin Hoffmann, Igor L. Krestnikov, Daniil A. Livshits, Matthias Golling, Thomas Südmeyer, and Ursula Keller, "VECSEL gain characterization," Opt. Express 20, 4136-4148 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4136


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996). [CrossRef]
  2. S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett.12(9), 1135–1137 (2000). [CrossRef]
  3. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006). [CrossRef]
  4. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009). [CrossRef]
  5. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98(7), 071103 (2011). [CrossRef]
  6. D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42(8), 838–847 (2006). [CrossRef]
  7. B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express18(26), 27582–27588 (2010). [CrossRef] [PubMed]
  8. D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B88(4), 493–497 (2007). [CrossRef]
  9. P. Klopp, F. Saas, M. Zorn, M. Weyers, and U. Griebner, “290-fs pulses from a semiconductor disk laser,” Opt. Express16(8), 5770–5775 (2008). [CrossRef] [PubMed]
  10. K. G. Wilcox, M. Butkus, I. Farrer, D. A. Ritchie, A. Tropper, and E. U. Rafailov, “Subpicosecond quantum dot saturable absorber mode-locked semiconductor disk laser,” Appl. Phys. Lett.94(25), 251105 (2009). [CrossRef]
  11. K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.22(14), 1021–1023 (2010). [CrossRef]
  12. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19(9), 8108–8116 (2011). [CrossRef] [PubMed]
  13. S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express19(17), 16491–16497 (2011). [CrossRef] [PubMed]
  14. M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Südmeyer, J. M. Dudley, and U. Keller, “Self-referencable frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B99(3), 401–408 (2010). [CrossRef]
  15. R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011). [CrossRef] [PubMed]
  16. M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, and U. Keller, “Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs,” Opt. Express18(10), 10143–10153 (2010). [CrossRef] [PubMed]
  17. R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B75(4-5), 445–451 (2002). [CrossRef]
  18. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quantum Electron.2(3), 540–556 (1996). [CrossRef]
  19. D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express16(10), 7571–7579 (2008). [CrossRef] [PubMed]
  20. O. D. Sieber, V. J. Wittwer, M. Mangold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond VECSEL with tunable multi-gigahertz repetition rate,” Opt. Express19(23), 23538–23543 (2011). [CrossRef] [PubMed]
  21. K. L. Hall, E. R. Thoen, and E. P. Ippen, “Nonlinearities in Active Media,” in Semiconductors and Semimetals, G. Elsa, and K. Alan, eds. (Elsevier, 1998), pp. 83–160.
  22. D. Maas, “MIXSELs - A New Class of Ultrafast Semiconductor Lasers,” dissertation (ETH Zurich, Nr. 18121, Hartung-Gorre Verlag, Konstanz, 2009).
  23. G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B81(1), 27–32 (2005). [CrossRef]
  24. Z. G. Wang, F. Q. Liu, J. B. Liang, and B. Xu, “Self-assembled InAs/GaAs quantum dots and quantum dot laser,” Sci. China A43(8), 861–870 (2000). [CrossRef]
  25. R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High–power passively mode–locked semiconductor lasers,” IEEE J. Quantum Electron.38(9), 1268–1275 (2002). [CrossRef]
  26. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B79(3), 331–339 (2004). [CrossRef]
  27. D. J. H. C. Maas, A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “Growth parameter optimization for fast quantum dot SESAMs,” Opt. Express16(23), 18646–18656 (2008). [CrossRef] [PubMed]
  28. O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of passively modelocked lasers for the case of a nonlinear complex propagation coefficient,” J. Opt. Soc. Am. B2(5), 753–760 (1985). [CrossRef]
  29. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys.34(8), 2346–2349 (1963). [CrossRef]
  30. E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Two-photon absorption in semiconductor saturable absorber mirrors,” Appl. Phys. Lett.74(26), 3927–3929 (1999). [CrossRef]
  31. M. Haiml, U. Siegner, F. Morier-Genoud, U. Keller, M. Luysberg, R. C. Lutz, P. Specht, and E. R. Weber, “Optical nonlinearity in low-temperature-grown GaAs: Microscopic limitations and optimization strategies,” Appl. Phys. Lett.74(21), 3134–3136 (1999). [CrossRef]
  32. M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express18(20), 21330–21341 (2010). [CrossRef] [PubMed]
  33. C. Borgentun, J. Bengtsson, and A. Larsson, “Direct measurement of the spectral reflectance of OP-SDL gain elements under optical pumping,” Opt. Express19(18), 16890–16897 (2011). [CrossRef] [PubMed]
  34. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, M. Barnes, I. Farrer, D. A. Richie, and A. Tropper, “Gain Saturation in 60-fs Mode-Locked Semiconductor Laser” (Optical Society of America, 2010), p. CMY4.
  35. G. P. Agrawal, “Effect of gain dispersion on ultrashort pulse amplification in semiconductor laser amplifiers,” IEEE J. Quantum Electron.27(6), 1843–1849 (1991). [CrossRef]
  36. S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, “A solution-processed 1.53 µm quantum dot laser with temperature-invariant emission wavelength,” Opt. Express14(8), 3273–3281 (2006). [CrossRef] [PubMed]
  37. N. N. Ledentsov, N. Kirstaedter, M. Grundmann, D. Bimberg, V. M. Ustinov, I. V. Kochnev, P. S. Kop'ev, and Z. I. Alferov, “Three-dimensional arrays of self-ordered quantum dots for laser applications,” Microelectron. J.28(8-10), 915–931 (1997). [CrossRef]
  38. J. Hader, J. V. Moloney, S. W. Koch, and W. W. Chow, “Microscopic modeling of gain and luminescence in semiconductors,” IEEE J. Sel. Top. Quantum Electron.9(3), 688–697 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited