OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4159–4167

Optoacoustic monitoring of cerebral venous blood oxygenation though intact scalp in large animals

I. Y. Petrov, Y. Petrov, D. S. Prough, I. Cicenaite, D. J. Deyo, and R. O. Esenaliev  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4159-4167 (2012)
http://dx.doi.org/10.1364/OE.20.004159


View Full Text Article

Enhanced HTML    Acrobat PDF (1266 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Monitoring (currently invasive) of cerebral venous blood oxygenation is a key to avoiding hypoxia-induced brain injury resulting in death or severe disability. Noninvasive, optoacoustic monitoring of cerebral venous blood oxygenation can potentially replace existing invasive methods. To the best of our knowledge, we report for the first time noninvasive monitoring of cerebral venous blood oxygenation through intact scalp that was validated with invasive, “gold standard” measurements. We performed an in vivo study in the sheep superior sagittal sinus (SSS), a large midline cerebral vein, using our novel, multi-wavelength optoacoustic system. The study results demonstrated that: 1) the optoacoustic signal from the sheep SSS is detectable through the thick, intact scalp and skull; 2) the SSS signal amplitude correlated well with wavelength and actual SSS blood oxygenation measured invasively using SSS catheterization, blood sampling, and measurement with “gold standard” CO-Oximeter; 3) the optoacoustically predicted oxygenation strongly correlated with that measured with the CO-Oximeter. Our results indicate that monitoring of cerebral venous blood oxygenation may be performed in humans noninvasively and accurately through the intact scalp using optoacoustic systems because the sheep scalp and skull thickness is comparable to that of humans whereas the sheep SSS is much smaller than that of humans.

© 2012 OSA

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.1460) Medical optics and biotechnology : Blood gas monitoring
(170.1610) Medical optics and biotechnology : Clinical applications
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 19, 2011
Revised Manuscript: January 29, 2012
Manuscript Accepted: January 29, 2012
Published: February 3, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
I. Y. Petrov, Y. Petrov, D. S. Prough, I. Cicenaite, D. J. Deyo, and R. O. Esenaliev, "Optoacoustic monitoring of cerebral venous blood oxygenation though intact scalp in large animals," Opt. Express 20, 4159-4167 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. Bratton, R. M. Chestnut, J. Ghajar, F. F. McConnell Hammond, O. A. Harris, R. Hartl, G. T. Manley, A. w. Nemecek, D. W. Newell, G. Rosenthal, J. Schouten, L. Shutter, S. D. Timmons, J. S. Ullman, W. Videtta, J. E. Wilberger, and D. W. Wright, “Guidelines for the management of severe traumatic brain injury. I. Blood pressure and oxygenation,” J. Neurotrauma24(Supplement 1), S7–S13 (2007).
  2. S. L. Bratton, R. M. Chestnut, J. Ghajar, F. F. McConnell Hammond, O. A. Harris, R. Hartl, G. T. Manley, A. w. Nemecek, D. W. Newell, G. Rosenthal, J. Schouten, L. Shutter, S. D. Timmons, J. S. Ullman, W. Videtta, J. E. Wilberger, and D. W. Wright, “Guidelines for the management of severe traumatic brain injury. X. Brain oxygen monitoring and thresholds,” J. Neurotrauma24(Supplement 1), S65–S70 (2007).
  3. S. L. Bratton, R. M. Chestnut, J. Ghajar, F. F. McConnell Hammond, O. A. Harris, R. Hartl, G. T. Manley, A. w. Nemecek, D. W. Newell, G. Rosenthal, J. Schouten, L. Shutter, S. D. Timmons, J. S. Ullman, W. Videtta, J. E. Wilberger, and D. W. Wright, “Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds,” J. Neurotrauma24(Supplement 1), S59–S64 (2007).
  4. S. P. Gopinath, C. S. Robertson, C. F. Contant, C. Hayes, Z. Feldman, R. K. Narayan, and R. G. Grossman, “Jugular venous desaturation and outcome after head injury,” J. Neurol. Neurosurg. Psychiatry57(6), 717–723 (1994). [CrossRef] [PubMed]
  5. D. S. Prough, V. Yancy, and D. J. Deyo, “Brain monitoring: considerations in patients with craniocerebral missile wounds,” in Missile Wounds of the Head and Neck, B. Aarabi and H. H. Kaufman, eds., (The American Association of Neurosurgical Surgeons, Rolling Meadows, IL, 1999), 221–253.
  6. W. J. Levy, S. Levin, and B. Chance, “Near-infrared measurement of cerebral oxygenation. Correlation with electroencephalographic ischemia during ventricular fibrillation,” Anesthesiology83(4), 738–746 (1995). [CrossRef] [PubMed]
  7. J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004). [CrossRef] [PubMed]
  8. V. Pollard, D. S. Prough, A. E. DeMelo, D. J. Deyo, T. Uchida, and H. F. Stoddart, “Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo,” Anesth. Analg.82(2), 269–277 (1996). [PubMed]
  9. V. Pollard, D. S. Prough, A. E. DeMelo, D. J. Deyo, T. Uchida, and R. Widman, “The influence of carbon dioxide and body position on near-infrared spectroscopic assessment of cerebral hemoglobin oxygen saturation,” Anesth. Analg.82(2), 278–287 (1996). [PubMed]
  10. V. Pollard and D. S. Prough, “Cerebral oxygenation: near-infrared spectroscopy,” in Principles and Practice of Intensive Care Monitoring, M. J. Tobin, ed., (McGraw-Hill, New York, 1998), 1019–1033.
  11. R. O. Esenaliev, K. V. Larin, I. V. Larina, M. Motamedi, and D. S. Prough, “Optoacoustic technique for non-invasive continuous monitoring of blood oxygenation,” in Biomedical Topical Meetings (Optical Society of America, Washington DC, 2000), 272–274.
  12. R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt.41(22), 4722–4731 (2002). [CrossRef] [PubMed]
  13. Y. Y. Petrov, D. S. Prough, D. J. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, “Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep,” Anesthesiology102(1), 69–75 (2005). [CrossRef] [PubMed]
  14. Y. Y. Petrov, I. Y. Petrova, I. A. Patrikeev, R. O. Esenaliev, and D. S. Prough, “Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: a pilot clinical test in the internal jugular vein,” Opt. Lett.31(12), 1827–1829 (2006). [CrossRef] [PubMed]
  15. H. P. Brecht, D. S. Prough, Y. Y. Petrov, I. Patrikeev, I. Y. Petrova, D. J. Deyo, I. Cicenaite, and R. O. Esenaliev, “In vivo monitoring of blood oxygenation in large veins with a triple-wavelength optoacoustic system,” Opt. Express15(24), 16261–16269 (2007). [CrossRef] [PubMed]
  16. I. Y. Petrova, Y. Y. Petrov, R. O. Esenaliev, D. J. Deyo, I. Cicenaite, and D. S. Prough, “Noninvasive monitoring of cerebral blood oxygenation in ovine superior sagittal sinus with novel multi-wavelength optoacoustic system,” Opt. Express17(9), 7285–7294 (2009). [CrossRef] [PubMed]
  17. I. Y. Petrov, Y. Petrov, D. S. Prough, D. J. Deyo, I. Cicenaite, and R. O. Esenaliev, “Optoacoustic monitoring of cerebral venous blood oxygenation through extracerebral blood,” Biomed. Opt. Express3(1), 125–136 (2012). [CrossRef] [PubMed]
  18. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990). [CrossRef]
  19. S. Jacques, “Optical absorption of hemoglobin,” Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  20. Y. Y. Petrov, D. S. Prough, D. J. Deyo, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, “In vivo noninvasive monitoring of cerebral blood oxygenation with optoacoustic technique,” in Proceedings of the 26th Intern. Conf. of IEEE EMBS (Inst. of Electr. and Electronics Engineers, NY, 2004), 2052–2054.
  21. S. Jacques, “Optical absorption of melanin,” Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/melanin/mua.html .
  22. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  23. ANSI Z136, 1 – 2000” in American national standard for safe use of lasers (The Laser Institute of America, Orlando, FL, 2000).
  24. P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express15(6), 3301–3311 (2007). [CrossRef] [PubMed]
  25. V. V. Tuchin, Tissue Optics: Light scattering methods and instruments for medical diagnostics, 2nd ed. (SPIE Press, Bellingham, WA, 2007).
  26. F. J. Fry and J. E. Barger, “Acoustical properties of the human skull,” J. Acoust. Soc. Am.63(5), 1576–1590 (1978). [CrossRef] [PubMed]
  27. J. Enderle, S. Blanchard, and J. Bronzino, Introduction to Biomedical Engineering (Academic Press, San Diego, CA, 2000), Chap. 15.
  28. K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Piezoelectric annular array for large depth of field photoacoustic imaging,” Biomed. Opt. Express2(9), 2655–2664 (2011). [CrossRef] [PubMed]
  29. V. G. Andreev, Y. Y. Petrov, D. S. Prough, I. Y. Petrova, and R. O. Esenaliev, “Novel optoacoustic array for noninvasive monitoring of blood parameters,” Proc. SPIE7177, 71770O, 71770O-6 (2009). [CrossRef]
  30. A. Taruttis, E. Herzog, D. Razansky, and V. Ntziachristos, “Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography,” Opt. Express18(19), 19592–19602 (2010). [CrossRef] [PubMed]
  31. J. Jose, R. G. H. Willemink, S. Resink, D. Piras, J. C. G. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express19(3), 2093–2104 (2011). [CrossRef] [PubMed]
  32. I. Y. Petrova, Y. Y. Petrov, D. S. Prough, and R. O. Esenaliev, “Clinical tests of highly portable, 2-lb, laser diode-based, noninvasive, optoacoustic hemoglobin monitor,” Proc. SPIE7177, 717705, 717705-6 (2009). [CrossRef]
  33. E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res.69(20), 7926–7934 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited