OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4176–4188

Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response

Giuseppe Toscano, Søren Raza, Antti-Pekka Jauho, N. Asger Mortensen, and Martijn Wubs  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4176-4188 (2012)
http://dx.doi.org/10.1364/OE.20.004176


View Full Text Article

Enhanced HTML    Acrobat PDF (991 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the effect of nonlocal optical response on the optical properties of metallic nanowires, by numerically implementing the hydrodynamical Drude model for arbitrary nanowire geometries. We first demonstrate the accuracy of our frequency-domain finite-element implementation by benchmarking it in a wide frequency range against analytical results for the extinction cross section of a cylindrical plasmonic nanowire. Our main results concern more complex geometries, namely cylindrical and bow-tie nanowire dimers that can strongly enhance optical fields. For both types of dimers we find that nonlocal response can strongly affect both the field enhancement in between the dimers and their respective extinction cross sections. In particular, we give examples of blueshifted maximal field enhancements near hybridized plasmonic dimer resonances that are still large but nearly two times smaller than in the usual local-response description. For the same geometry at a fixed frequency, the field enhancement and cross section can also be significantly more enhanced in the nonlocal-response model.

© 2012 OSA

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(290.0290) Scattering : Scattering
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 11, 2011
Revised Manuscript: January 11, 2012
Manuscript Accepted: January 30, 2012
Published: February 3, 2012

Citation
Giuseppe Toscano, Søren Raza, Antti-Pekka Jauho, N. Asger Mortensen, and Martijn Wubs, "Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response," Opt. Express 20, 4176-4188 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4176


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010). [CrossRef]
  4. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field enhanced spectroscopy,” Phys. Rev. B71, 235420 (2005). [CrossRef]
  5. S. Xiao, N. A. Mortensen, and A.-P. Jauho, “Nanostructure design for surface-enhanced Raman spectroscopy - prospects and limits,” J. Eur. Opt. Soc. Rap. Pub.3, 08022 (2008). [CrossRef]
  6. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011). [CrossRef]
  7. Y. Chen, M. Wubs, J. Mørk, and A. F. Koenderink, “Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides,” New J. Phys.13, 103010 (2011). [CrossRef]
  8. C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Analyzing the scattering properties of coupled metallic nanoparticles,” J. Opt. Soc. Am. A21, 1761–1768 (2004). [CrossRef]
  9. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express15, 17736–17746 (2007). [CrossRef] [PubMed]
  10. V. Giannini and J. A. Sánchez-Gil, “Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Greens theorem surface integral equations in parametric form,” J. Opt. Soc. Am. A24, 2822–2830 (2007). [CrossRef]
  11. T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun.2:481 doi: (2011). [CrossRef] [PubMed]
  12. R. Fuchs and K. L. Kliewer, “Optical properties of an electron gas: further studies of a nonlocal description,” Phys. Rev.185, 905–913 (1969). [CrossRef]
  13. B. B. Dasgupta and R. Fuchs, “Polarizability of a small sphere including nonlocal effects,” Phys. Rev. B24, 554–561 (1981). [CrossRef]
  14. F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112, 17983–17987 (2008). [CrossRef]
  15. J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett.103, 097403 (2009). [CrossRef] [PubMed]
  16. S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B84, 121412(R) (2011). [CrossRef]
  17. C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C115, 19470–19475 (2011). [CrossRef]
  18. R. Ruppin, “Extinction properties of thin metallic nanowires,” Opt. Commun.190, 205–209 (2001). [CrossRef]
  19. I. Villó-Pérez and N. R. Arista, “Hydrodynamical model for bulk and surface plasmons in cylindrical wires,” Surf. Sci.603, 1–13 (2009). [CrossRef]
  20. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett.105, 233901 (2010). [CrossRef]
  21. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express8, 655–663 (2001). [CrossRef] [PubMed]
  22. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003). [CrossRef] [PubMed]
  23. D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoshell dimers,” J. Chem. Phys.123, 024701 (2005). [CrossRef]
  24. T. J. Davis, D. E. Goméz, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett.10, 2618–2625 (2010). [CrossRef] [PubMed]
  25. A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett.11, 1323–1330 (2011). [CrossRef] [PubMed]
  26. R. Fuchs and F. Claro, “Multipolar response of small metallic spheres: nonlocal theory,” Phys. Rev. B35, 3722–3727 (1987). [CrossRef]
  27. R. Rojas, F. Claro, and R. Fuchs, “Nonlocal response of a small coated sphere,” Phys. Rev. B37, 6799–6808 (1988). [CrossRef]
  28. V. Yannopapas, “Non-local optical response of two-dimensional arrays of metallic nanoparticles,” J. Phys. Condens. Matt.20, 325211 (2008). [CrossRef]
  29. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett.9, 887–891 (2009). [CrossRef] [PubMed]
  30. J. Aizpura and A. Rivacoba, “Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams,” Phys. Rev. B78, 035404 (2008). [CrossRef]
  31. O. Nicoletti, M. Wubs, N. A. Mortensen, W. Sigle, P. A. van Aken, and P. A. Midgley, “Surface plasmon modes of a single silver nanorod: an electron energy loss study,” Opt. Express19, 15371–15379 (2011). [CrossRef] [PubMed]
  32. E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultra-thin plasmonic strip antennas by cathodoluminescence,” Nano Lett.11, 4265–4269 (2011). [CrossRef] [PubMed]
  33. A. L. Fetter, “Electrodynamics of a layered electron gas. I. Single layer,” Ann. Phys. (N.Y.)81, 367–393 (1973). [CrossRef]
  34. Z. F. Öztürk, S. Xiao, M. Yan, M. Wubs, A.-P. Jauho, and N. A. Mortensen, “Field enhancement at metallic interfaces due to quantum confinement,” J. Nanophoton.5, 051602 (2011). [CrossRef]
  35. M. S. Gockenbach, Understanding and Implementing the Finite Element Method (SIAM, 2006). [CrossRef]
  36. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitensdorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008). [CrossRef]
  37. R. Marty, G. Baffou, A. Arbouet, C. Girard, and R. Quidant, “Charge distribution induced inside complex plasmonic nanoparticles,” Opt. Express18, 3035–3044 (2010). [CrossRef] [PubMed]
  38. W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver bowtie nanoantennas with varied bow angles,” J. Appl. Phys.108, 124314 (2010). [CrossRef]
  39. H. Wallén, H. Kettunen, and A. Sihvola, “Surface modes of negative-parameter interfaces and the importance of rounding sharp corners,” Metamaterials2, 113–121 (2008). [CrossRef]
  40. X. Cui and D. Erni, “The influence of particle shapes on the optical response of nearly touching plasmonic nanoparticle dimers,” J. Comput. Theor. Nanosci.7, 1610–1615 (2010). [CrossRef]
  41. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11, 1280–1283 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited