OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4213–4218

Waveguide structures for the visible and near-infrared wavelength regions in near-stoichiometric lithium niobate formed by swift argon-ion irradiation

Qing Huang, Peng Liu, Tao Liu, Lian Zhang, and Xue-Lin Wang  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 4213-4218 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1302 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the fabrication of a waveguide structure in a near-stoichiometric lithium niobate crystal using 200-MeV argon-ion irradiation at a fluence of 2 × 1012 ions/cm2. Guided modes were detected in the visible and near-infrared wavelength regions, suggesting that the waveguide can be used at fiber communications wavelengths. The refractive index profiles of the waveguide were reconstructed from the effective index functions. Micro-Raman spectra recorded in the waveguide layer and the substrate showed that the Li/Nb ratio was preserved in the waveguide layer after swift argon-ion irradiation.

© 2012 OSA

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Integrated Optics

Original Manuscript: December 8, 2011
Manuscript Accepted: January 18, 2012
Published: February 6, 2012

Qing Huang, Peng Liu, Tao Liu, Lian Zhang, and Xue-Lin Wang, "Waveguide structures for the visible and near-infrared wavelength regions in near-stoichiometric lithium niobate formed by swift argon-ion irradiation," Opt. Express 20, 4213-4218 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. B. Tsai, Y. T. Hsia, M. D. Shih, C. Y. Tai, C. K. Hsieh, W. C. Hsu, and C. W. Lan, “Zone-levelling czochralski growth of MgO-doped near-stoichiometric lithium niobate single crystals,” J. Cryst. Growth275(3-4), 504–511 (2005). [CrossRef]
  2. V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998). [CrossRef]
  3. R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett.25(8), 458–460 (1974). [CrossRef]
  4. Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett.86(1), 011104 (2005). [CrossRef]
  5. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett.41(7), 607–608 (1982). [CrossRef]
  6. K. Gallo, M. De Micheli, and P. Baldi, “Parametric fluorescence in periodically poled LiNbO3 buried waveguides,” Appl. Phys. Lett.80(24), 4492–4494 (2002). [CrossRef]
  7. L. Zhang, P. J. Chandler, and P. D. Townsend, “Extra “strange” modes in ion implanted lithium niobate waveguides,” J. Appl. Phys.70(3), 1185–1189 (1991). [CrossRef]
  8. H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt.40(22), 3759–3761 (2001). [CrossRef] [PubMed]
  9. X. L. Wang, F. Chen, L. Wang, and Y. Jiao, “Channel waveguides of LiNbO3 crystals fabricated by low-dose oxygen ion implantation,” J. Appl. Phys.100(5), 056106 (2006). [CrossRef]
  10. D. L. Zhang, P. Zhang, H. J. Zhou, and E. Y. B. Pun, “Characterization of near-stoichiometric Ti: LiNbO3 strip waveguides with varied substrate refractive index in the guiding layer,” J. Opt. Soc. Am. A25(10), 2558–2570 (2008). [CrossRef]
  11. L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express15(25), 16880–16885 (2007). [CrossRef] [PubMed]
  12. X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett.86(4), 041103 (2005). [CrossRef]
  13. F. Chen, Y. Tan, and A. Ródenas, “Ion implanted optical channel waveguides in Er3+/MgO co-doped near stoichiometric LiNbO3: a new candidate for active integrated photonic devices operating at 1.5 μm,” Opt. Express16(20), 16209–16214 (2008). [CrossRef] [PubMed]
  14. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett.86(18), 183501 (2005). [CrossRef]
  15. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett.32(17), 2587–2589 (2007). [CrossRef] [PubMed]
  16. K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol.3(2), 385–391 (1985). [CrossRef]
  17. D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron.26(1), 135–138 (1990). [CrossRef]
  18. A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997). [CrossRef]
  19. U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Mater. Sci. Process.56, 311–315 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited