OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4225–4231

Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform

Manjit Chahal, George K. Celler, Yogesh Jaluria, and Wei Jiang  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 4225-4231 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1668 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Employing a semi-analytic approach, we study the influence of key structural and optical parameters on the thermo-optic characteristics of photonic crystal waveguide (PCW) structures on a silicon-on-insulator (SOI) platform. The power consumption and spatial temperature profile of such structures are given as explicit functions of various structural, thermal and optical parameters, offering physical insight not available in finite-element simulations. Agreement with finite-element simulations and experiments is demonstrated. Thermal enhancement of the air-bridge structure is analyzed. The practical limit of thermo-optic switching power in slow light PCWs is discussed, and the scaling with key parameters is analyzed. Optical switching with sub-milliwatt power is shown viable.

© 2012 OSA

OCIS Codes
(130.4815) Integrated optics : Optical switching devices
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals
(130.4110) Integrated optics : Modulators

ToC Category:
Photonic Crystals

Original Manuscript: December 15, 2011
Revised Manuscript: January 26, 2012
Manuscript Accepted: January 27, 2012
Published: February 6, 2012

Manjit Chahal, George K. Celler, Yogesh Jaluria, and Wei Jiang, "Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform," Opt. Express 20, 4225-4231 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  2. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006). [CrossRef]
  3. G. K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator,” J. Appl. Phys.93(9), 4955–4978 (2003). [CrossRef]
  4. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004). [CrossRef] [PubMed]
  5. E. A. Camargo, H. M. H. Chong, and R. M. De La Rue, “2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,” Opt. Express12(4), 588–592 (2004). [CrossRef] [PubMed]
  6. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005). [CrossRef] [PubMed]
  7. M. T. Tinker and J.-B. Lee, “Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency,” Opt. Express13(18), 7174–7188 (2005). [CrossRef] [PubMed]
  8. L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Thermooptically tuned photonic crystal waveguide silicon-on-insulator Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.19(5), 342–344 (2007). [CrossRef]
  9. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett.33(2), 147–149 (2008). [CrossRef] [PubMed]
  10. Y. Cui, K. Liu, D. L. MacFarlane, and J.-B. Lee, “Thermo-optically tunable silicon photonic crystal light modulator,” Opt. Lett.35(21), 3613–3615 (2010). [CrossRef] [PubMed]
  11. L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett.90(7), 071105 (2007). [CrossRef]
  12. L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of p-i-n diode based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron.14(4), 1132–1139 (2008). [CrossRef]
  13. J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. H. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett.92(10), 103114 (2008). [CrossRef]
  14. V. M. N. Passaro, F. Magno, and A. V. Tsarev, “Investigation of thermo-optic effect and multi-reflector tunable filter/multiplexer in SOI waveguides,” Opt. Express13(9), 3429–3437 (2005). [CrossRef] [PubMed]
  15. L. T. Su, J. E. Chung, D. A. Antoniadis, K. E. Goodson, and M. I. Flik, “Measurement and modeling of self-heating in SOI nMOSFETS,” IEEE Trans. Electron. Dev.41(1), 69–75 (1994). [CrossRef]
  16. Y. Jaluria, Natural Convection Heat and Mass Transfer (Pergamon Press, Oxford, UK, 1980).
  17. M. Iodice, G. Mazzi, and L. Sirleto, “Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide,” Opt. Express14(12), 5266–5278 (2006). [CrossRef] [PubMed]
  18. E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B72(11), 115102 (2005). [CrossRef]
  19. W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010). [CrossRef]
  20. C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W.-C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett.97(18), 183302 (2010). [CrossRef]
  21. C. M. Reinke, M. F. Su, B. L. Davis, B. Kim, M. I. Hussein, Z. C. Leseman, R. H. Olsson-III, and I. El-Kady, “Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique,” AIP Advances1(4), 041403 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited