OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4309–4330

Impact of signal-to-noise ratio in a hyperspectral sensor on the accuracy of biophysical parameter estimation in case II waters

Wesley J. Moses, Jeffrey H. Bowles, Robert L. Lucke, and Michael R. Corson  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4309-4330 (2012)
http://dx.doi.org/10.1364/OE.20.004309


View Full Text Article

Enhanced HTML    Acrobat PDF (1028 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Errors in the estimated constituent concentrations in optically complex waters due solely to sensor noise in a spaceborne hyperspectral sensor can be as high as 80%. The goal of this work is to elucidate the effect of signal-to-noise ratio (SNR) on the accuracy of retrieved constituent concentrations. Large variations in the magnitude and spectral shape of the reflectances from coastal waters complicate the impact of SNR on the accuracy of estimation. Due to the low reflectance of water, the actual SNR encountered for a water target is usually quite lower than the prescribed SNR. The low SNR can be a significant source of error in the estimated constituent concentrations. Simulated and measured at-surface reflectances were used in this study. A radiative transfer code, Tafkaa, was used to propagate the at-surface reflectances up and down through the atmosphere. A sensor noise model based on that of the spaceborne hyperspectral sensor HICO was applied to the at-sensor radiances. Concentrations of chlorophyll-a, colored dissolved organic matter, and total suspended solids were estimated using an optimized error minimization approach and a few semi-analytical algorithms. Improving the SNR by reasonably modifying the sensor design can reduce estimation uncertainties by 10% or more.

© 2012 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(110.4280) Imaging systems : Noise in imaging systems
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: December 5, 2011
Revised Manuscript: January 13, 2012
Manuscript Accepted: January 16, 2012
Published: February 7, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Wesley J. Moses, Jeffrey H. Bowles, Robert L. Lucke, and Michael R. Corson, "Impact of signal-to-noise ratio in a hyperspectral sensor on the accuracy of biophysical parameter estimation in case II waters," Opt. Express 20, 4309-4330 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4309


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, “Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products,” J. Geophys. Res.96(C11), 20599–20611 (1991). [CrossRef]
  2. F. E. Müller-Karger, J. J. Walsh, R. H. Evans, and M. B. Meyers, “On the seasonal phytoplankton concentration and sea surface temperature cycles of the Gulf of Mexico as determined by satellites,” J. Geophys. Res.96(C7), 12645–12665 (1991). [CrossRef]
  3. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104(C3), 5403–5421 (1999). [CrossRef]
  4. C. Hu, K. L. Carder, and F. E. Müller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ.74(2), 195–206 (2000). [CrossRef]
  5. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res.108, 3211 (2003), doi:. [CrossRef] [PubMed]
  6. K. L. Carder, F. R. Chen, J. P. Cannizzaro, J. W. Campbell, and B. G. Mitchell, “Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a,” Adv. Space Res.33(7), 1152–1159 (2004). [CrossRef]
  7. M. Darecki and D. Stramski, “An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea,” Remote Sens. Environ.89(3), 326–350 (2004). [CrossRef]
  8. G. Dall'Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ.96(2), 176–187 (2005). [CrossRef]
  9. C. O. Davis, M. Kavanaugh, R. Letelier, P. W. Bissett, and D. Kohler, “Spatial and spectral resolution considerations for imaging coastal waters,” Proc. SPIE, Characterization and Variability of the Coastal Ocean: Composition and Bio-optical Properties II 6680, 66800P, doi:10.1117/12.734288 (2007). [CrossRef]
  10. G. Chang, K. Mahoney, A. Briggs-Whitmire, D. D. R. Kohler, C. D. Mobley, M. Lewis, M. A. Moline, E. Boss, M. Kim, W. Philpot, and T. D. Dickey, “The new age of hyperspectral oceanography,” Oceanography (Wash. D.C.)17(2), 16–23 (2004).
  11. M. Sydor, R. W. Gould, R. A. Arnone, V. I. Haltrin, and W. Goode, “Uniqueness in remote sensing of the inherent optical properties of ocean water,” Appl. Opt.43(10), 2156–2162 (2004). [CrossRef] [PubMed]
  12. P. W. Bissett, R. A. Arnone, C. O. Davis, T. D. Dickey, D. Dye, D. D. R. Kohler, and R. W. Gould, “From meters to kilometers - a look at ocean color scales of variability, spatial coherence, and the need for fine scale remote sensing in coastal ocean optics,” Oceanography (Wash. D.C.)17(2), 32–43 (2004).
  13. W. J. Moses, A. A. Gitelson, S. Berdnikov, and V. Povazhnyy, “Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data - successes and challenges,” Environ. Res. Lett.4(045005), 8 (2009).
  14. A. Morel, “In-water and remote measurement of ocean color,” Boundary-Layer Meterol.18(2), 177–201 (1980). [CrossRef]
  15. IOCCG, “Remote sensing of ocean colour in coastal, and other optically-complex, waters,” S. Sathyendranath, ed., Reports of the International Ocean-Colour Coordinating Group, No. 3, IOCCG, Dartmouth, Canada (2000).
  16. V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Rem. Sens.41(6), 1378–1387 (2003). [CrossRef]
  17. J. H. Bowles, S. J. Maness, W. Chen, C. O. Davis, T. F. Donato, D. B. Gillis, D. Korwan, G. Lamela, M. J. Montes, W. J. Rhea, and W. A. Snyder, “Hyperspectral imaging of an inter-coastal waterway,” Proc. SPIE, Monitoring and Change Detection 5983, 59830F, doi:10.1117/12.627676 (2005). [CrossRef]
  18. R. P. Stumpf and P. J. Werdell, “Adjustment of ocean color sensor calibration through multi-band statistics,” Opt. Express18(2), 401–412 (2010). [CrossRef] [PubMed]
  19. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977). [CrossRef]
  20. A. Eckardt, S. Hofer, C. Neumann, and W. Skrbek, “SNR estimation for advanced hyperspectral space instrument,” Proc. SPIE, IR Instruments 5883, 588303, doi:10.1117/12.609236 (2005). [CrossRef]
  21. M. Defoin-Platel and M. Chami, “How ambiguous is the inverse problem of ocean color in coastal waters?” J. Geophys. Res.112(C3), C03004 (2007), doi:. [CrossRef]
  22. J. M. Duarte, M. Velez-Reyes, S. Tarantola, F. Gilbes, and R. Armstrong, “A probabilistic sensitivity analysis of water-leaving radiance to water constituents in coastal shallow waters,” Proc. SPIE, Ocean-color Remote Sensing: Inherent Optical Properties and Applications I 5155, 162–173 (2003).
  23. M. S. Salama and A. Stein, “Error decomposition and estimation of inherent optical properties,” Appl. Opt.48(26), 4947–4962 (2009). [CrossRef] [PubMed]
  24. Z. P. Lee, R. Arnone, C. Hu, P. J. Werdell, and B. Lubac, “Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm,” Appl. Opt.49(3), 369–381 (2010). [CrossRef] [PubMed]
  25. D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. C. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The hyperspectral imager for the coastal ocean (HICO) – design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), 14–16 June 2010, pp. 1–4, doi: 10.1109/WHISPERS.2010.5594935. [CrossRef]
  26. R. L. Lucke, M. Corson, N. R. McGlothlin, S. D. Butcher, D. L. Wood, D. R. Korwan, R. R. Li, W. A. Snyder, C. O. Davis, and D. T. Chen, “Hyperspectral Imager for the Coastal Ocean: instrument description and first images,” Appl. Opt.50(11), 1501–1516 (2011). [CrossRef] [PubMed]
  27. J. R. Schott, Remote Sensing: The Image Chain Approach, 2nd ed. (Oxford University Press Inc., New York, 2007), p. 666.
  28. R. L. Lucke and R. A. Kessel, “Signal-to-noise ratio, contrast-to-noise ratio and exposure time for imaging systems with photon-limited noise,” Opt. Eng.45(5), 056403 (2006). [CrossRef]
  29. C. D. Mobley, “A numerical model for the computation of radiance distributions in natural waters with wind roughened surfaces,” Limnol. Oceanogr.34(8), 1473–1483 (1989). [CrossRef]
  30. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press Inc., San Diego, California, 1994), p. 592.
  31. C. D. Mobley and L. K. Sundman, Hydrolight 5 Ecolight 5 Technical Documentation, 1st ed., (Sequoia Scientific Inc., Bellevue, WA, 2008).
  32. A. Gitelson, D. Gurlin, W. Moses, and T. Barrow, “A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters,” Environ. Res. Lett.4(045003), 5 (2009).
  33. W. J. Moses, “Satellite-based estimation of chlorophyll-a concentration in turbid productive waters,” PhD dissertation, University of Nebraska-Lincoln, Lincoln, NE (2009).
  34. A. Gitelson, D. Gurlin, W. Moses, and Y. Yacobi, “Remote estimation of chlorophyll-a concentration in inland, estuarine, and coastal waters,” pp. 449–478, in Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications, Q. Weng, ed., (Taylor and Francis Group, Boca Raton, Florida), 610 p. (2011).
  35. D. Gurlin, A. A. Gitelson, and W. J. Moses, “Remote estimation of chl-a concentration in turbid productive waters – return to a simple two-band NIR-red model?” Remote Sens. Environ.115(12), 3479–3490 (2011). [CrossRef]
  36. B. C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt.39(6), 887–896 (2000). [CrossRef] [PubMed]
  37. M. J. Montes, B. C. Gao, and C. O. Davis, “A new algorithm for atmospheric correction of hyperspectral remote sensing data,” Proc. SPIE, Geo-spatial Image and Data Exploitation II, W. E. Roper, ed., 4383, 23–30 (2001).
  38. F. A. Kruse, J. W. Boardman, and J. F. Huntington, “Comparison of EO-1 Hyperion and airborne hyperspectral remote sensing data for geologic applications,” in Proceedings of IEEE Aerospace Conference3, 3–1501 – 3–1513, doi: 10.1109/AERO.2002.1035288 (2002). [CrossRef]
  39. F. A. Kruse, J. W. Boardman, and J. F. Huntington, “Comparison of airborne hyperspectral data and eo-1 hyperion for mineral mapping,” IEEE Trans. Geosci. Rem. Sens.41(6), 1388–1400 (2003). [CrossRef]
  40. C. B. Markwardt, “Non-Linear Least Squares Fitting in IDL with MPFIT,” in Proceedings of the Astronomical Data Analysis Software and Systems XVIII, ASP Conference Series, D. Bohlender, D. Durand, and P. Dowler, eds., 411, 251–254 (2009).
  41. J. J. Moré, “The Levenberg-Marquardt algorithm: implementation and theory,” in Numerical analysis, G. Watson, ed., 630, 105–116, doi: 10.1007/BFb0067700 (1978). [CrossRef]
  42. J. J. Moré and S. J. Wright, Optimization Software Guide, vol. 14, (SIAM Publications, 1993).
  43. K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math.2, 164–168 (1944).
  44. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math.11(2), 431–441 (1963). [CrossRef]
  45. J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.- Oceans103(C11), 24937–24953 (1998). [CrossRef]
  46. J. E. O'Reilly, “SeaWiFS postlaunch calibration and validation analyses, part 3,” NASA Tech. Memo. 2000–206892, Vol. 11, 49 pp., S. B. Hooker and E. R. Firestone, eds., NASA Goddard Space Flight Center, MD (2000).
  47. A. Gitelson, “The peak near 700 nm on radiance spectra of algae and water - relationships of its magnitude and position with chlorophyll concentration,” Int. J. Remote Sens.13(17), 3367–3373 (1992). [CrossRef]
  48. A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation,” Remote Sens. Environ.112(9), 3582–3593 (2008). [CrossRef]
  49. W. Moses, A. Gitelson, S. Berdnikov, and V. Povazhnyy, “Satellite estimation of chlorophyll-a concentration using the red and NIR bands of MERIS - the Azov Sea case study,” IEEE Geosci. Remote Sens. Lett.6(4), 845–849 (2009). [CrossRef]
  50. G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt.44(3), 412–422 (2005). [CrossRef] [PubMed]
  51. I. M. Levin and E. Levina, “Effect of atmospheric interference and sensor noise in retrieval of optically active materials in the ocean by hyperspectral remote sensing,” Appl. Opt.46(28), 6896–6906 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited