OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4454–4469

Photonic ADC: overcoming the bottleneck of electronic jitter

Anatol Khilo, Steven J. Spector, Matthew E. Grein, Amir H. Nejadmalayeri, Charles W. Holzwarth, Michelle Y. Sander, Marcus S. Dahlem, Michael Y. Peng, Michael W. Geis, Nicole A. DiLello, Jung U. Yoon, Ali Motamedi, Jason S. Orcutt, Jade P. Wang, Cheryl M. Sorace-Agaskar, Miloš A. Popović, Jie Sun, Gui-Rong Zhou, Hyunil Byun, Jian Chen, Judy L. Hoyt, Henry I. Smith, Rajeev J. Ram, Michael Perrott, Theodore M. Lyszczarz, Erich P. Ippen, and Franz X. Kärtner  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 4454-4469 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3782 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy. Photonic ADCs, which perform sampling using ultra-stable optical pulse trains generated by mode-locked lasers, have been investigated for many years as a promising approach to overcome the jitter problem and bring ADC performance to new levels. This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits using a photonic ADC built from discrete components. This accuracy corresponds to a timing jitter of 15 fs – a 4-5 times improvement over the performance of the best electronic ADCs which exist today. On the way towards an integrated photonic ADC, a silicon photonic chip with core photonic components was fabricated and used to digitize a 10 GHz signal with 3.5 effective bits. In these experiments, two wavelength channels were implemented, providing the overall sampling rate of 2.1 GSa/s. To show that photonic ADCs with larger channel counts are possible, a dual 20-channel silicon filter bank has been demonstrated.

© 2012 OSA

OCIS Codes
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(060.5625) Fiber optics and optical communications : Radio frequency photonics
(320.7085) Ultrafast optics : Ultrafast information processing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 19, 2011
Revised Manuscript: February 1, 2012
Manuscript Accepted: February 1, 2012
Published: February 8, 2012

Anatol Khilo, Steven J. Spector, Matthew E. Grein, Amir H. Nejadmalayeri, Charles W. Holzwarth, Michelle Y. Sander, Marcus S. Dahlem, Michael Y. Peng, Michael W. Geis, Nicole A. DiLello, Jung U. Yoon, Ali Motamedi, Jason S. Orcutt, Jade P. Wang, Cheryl M. Sorace-Agaskar, Miloš A. Popović, Jie Sun, Gui-Rong Zhou, Hyunil Byun, Jian Chen, Judy L. Hoyt, Henry I. Smith, Rajeev J. Ram, Michael Perrott, Theodore M. Lyszczarz, Erich P. Ippen, and Franz X. Kärtner, "Photonic ADC: overcoming the bottleneck of electronic jitter," Opt. Express 20, 4454-4469 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Fujitsu Europe Press Release, Fujitsu launches second generation ultra-fast 65 GSa/s 8-Bit ADC technology for 100G optical transport. ( http://www.fujitsu.com/emea/news/pr/fseu-en_20100913-978.html ), September 13 (2010).
  2. Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S. Wang, “A 40 GS/s 6b ADC in 65 nm CMOS,” International Solid State Circuits Conference (ISSCC), paper 21.7 (2010).
  3. M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 GS/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits45(2), 380–390 (2010).
  4. R. Walden, “Analog-to-digital conversion in the early twenty-first century,” in Wiley Encyclopedia of Computer Science and Engineering (Wiley, 2008), pp. 126–138.
  5. J. Kim and F. X. Kärtner, “Attosecond-precision ultrafast photonics,” Laser Photon. Rev.4(3), 432–456 (2010). [CrossRef]
  6. H. A. Haus and A. Mecozzi, “Noise of mode-locked Lasers,” IEEE J. Quantum Electron.29(3), 983–996 (1993). [CrossRef]
  7. D. von der Linde, “Characterization of noise in continuously operating mode-locked lasers,” Appl. Phys. B39(4), 201–217 (1986). [CrossRef]
  8. D. E. Spence, J. M. Evans, W. E. Sleat, and W. Sibbett, “Regeneratively initiated self-mode-locked Ti:sapphire laser,” Opt. Lett.16(22), 1762–1764 (1991). [CrossRef] [PubMed]
  9. U. Keller, C. E. Soccolich, G. Sucha, M. N. Islam, and M. Wegener, “Noise characterization of femtosecond color-center lasers,” Opt. Lett.15(17), 974–976 (1990). [CrossRef] [PubMed]
  10. D. R. Walker, D. W. Crust, W. E. Sleat, and W. Sibbett, “Reduction of phase noise in passively mode-locked lasers,” IEEE J. Quantum Electron.28(1), 289–296 (1992). [CrossRef]
  11. J. Kim, J. Chen, J. Cox, and F. X. Kärtner, “Attosecond-resolution timing jitter characterization of free-running mode-locked lasers using balanced optical cross-correlation,” Opt. Lett.32(24), 3519–3521 (2007). [CrossRef] [PubMed]
  12. J. A. Cox, A. H. Nejadmalayeri, J. W. Kim, and F. X. Kärtner, “Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers,” Opt. Lett.35(20), 3522–3524 (2010). [CrossRef] [PubMed]
  13. A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Ultrashort laser pulses: optical flywheels with attosecond jitter,” Nat. Photonics (submitted to).
  14. H. Byun, A. Hanjani, S. Frolov, E. P. Ippen, D. Pudo, J. Shmulovich, and F. X. Kärtner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett.21(12), 763–765 (2009). [CrossRef]
  15. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010). [CrossRef] [PubMed]
  16. S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science306(5700), 1318–1324 (2004). [CrossRef] [PubMed]
  17. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics4(10), 716–720 (2010). [CrossRef]
  18. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003). [CrossRef] [PubMed]
  19. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007). [CrossRef]
  20. H. F. Taylor, M. J. Taylor, and P. W. Bauer, “Electro-optic analog-to-digital conversion using channel waveguide modulators,” Appl. Phys. Lett.32(9), 559–561 (1978). [CrossRef]
  21. A. Yariv and R. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett.34(21), 2012–2013 (1998). [CrossRef]
  22. J. U. Kang and R. D. Esman, “Demonstration of time interweaved photonic four-channel WDM sampler for hybrid analogue-digital converter,” Electron. Lett.35(1), 60–61 (1999). [CrossRef]
  23. J. A. Valdmanis, “Real time picosecond optical oscilloscope,” Proc. 5th OSA Top. Meet. Ultrafast Phenomena V, 82–85 (1986).
  24. M. Y. Frankel, J. U. Kang, and R. D. Esman, “High performance photonics analogue digital converter,” Electron. Lett.33(25), 2096–2097 (1997). [CrossRef]
  25. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express15(5), 1955–1982 (2007). [CrossRef] [PubMed]
  26. J. A. Bell, M. C. Hamilton, D. A. Leep, T. D. Moran, H. F. Taylor, and Y. H. Lee, “Extension of electronic A/D converters to multi-gigahertz sampling rates using optical sampling and demultiplexing techniques,” 23rd Asilomar Conference on Signals, Systems and Computers, 289–293 (1989).
  27. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech.49(10), 1840–1853 (2001). [CrossRef]
  28. R. C. Williamson, R. D. Younger, P. W. Juodawlkis, J. J.Hargreaves, J. C. Twichell, “Precision calibration of an optically sampled analog-to-digital converter,” 2003 Digest of the LEOS Summer Topical Meetings, MC4.2/22- MC4.2/23, 2003.
  29. A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett.34(11), 1081–1083 (1998). [CrossRef]
  30. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol.21(12), 3085–3103 (2003). [CrossRef]
  31. J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett.91(16), 161105 (2007). [CrossRef]
  32. G. Sefler, J. Chou, J. Conway, and G. Valley, “Distortion correction in a high-resolution time-stretch ADC scalable to continuous time,” J. Lightwave Technol.28(10), 1468–1476 (2010). [CrossRef]
  33. S. Gupta and B. Jalali, “Time-warp correction and calibration in photonic time-stretch analog-to-digital converter,” Opt. Lett.33(22), 2674–2676 (2008). [CrossRef] [PubMed]
  34. J. Chou, J. A. Conway, G. A. Sefler, G. C. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightwave Technol.27(22), 5073–5077 (2009). [CrossRef]
  35. P. W. Juodawlkis, J. J. Hargreaves, R. D. Younger, G. W. Titi, and J. C. Twichell, “Optical down-sampling of wide-band microwave signals,” J. Lightwave Technol.21(12), 3116–3124 (2003). [CrossRef]
  36. J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express16(21), 16509–16515 (2008). [CrossRef] [PubMed]
  37. M. Jarrahi, R. Pease, D. Miller, and T. Lee, “Optical spatial quantization for higher performance analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech.56(9), 2143–2150 (2008). [CrossRef]
  38. J. Stigwall and S. Galt, “Demonstration and analysis of a 40-gigasample/s interferometric analog-to-digital converter,” J. Lightwave Technol.24(3), 1247–1256 (2006). [CrossRef]
  39. K. Ikeda, J. M. Abdul, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Design considerations of all-optical A/D conversion: nonlinear fiber-optic Sagnac-loop interferometer-based optical quantizing and coding,” J. Lightwave Technol.24(7), 2618–2628 (2006). [CrossRef]
  40. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt.49(29), 5577–5582 (2010). [CrossRef] [PubMed]
  41. T. R. Clark, M. Currie, and P. J. Matthews, “Digitally linearized wide-band photonic link,” J. Lightwave Technol.19(2), 172–179 (2001). [CrossRef]
  42. J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett.12(9), 1237–1239 (2000). [CrossRef]
  43. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010). [CrossRef]
  44. S. J. Spector, M. W. Geis, G. R. Zhou, M. E. Grein, F. Gan, M. A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express16(15), 11027–11031 (2008). [CrossRef] [PubMed]
  45. S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and optimization of silicon-diode-based optical modulators,” IEEE J. Sel. Top. Quantum Electron.16(1), 165–172 (2010). [CrossRef]
  46. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010). [CrossRef]
  47. M. W. Geis, S. J. Spector, M. E. Grein, R. J. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Käertner, and T. M. Lyszczarz, “All silicon infrared photodiodes: photo response and effects of processing temperature,” Opt. Express15(25), 16886–16895 (2007). [CrossRef] [PubMed]
  48. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett.38(25), 1669–1670 (2002). [CrossRef]
  49. A. Khilo, C. M. Sorace, and F. X. Kärtner, “Broadband linearized silicon modulator,” Opt. Express19(5), 4485–4500 (2011). [CrossRef] [PubMed]
  50. C. H. Cox III, Analog Optical Link: Theory and Practice (Cambridge University Press, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited