OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4494–4502

Multi-band slow light metamaterial

Lei Zhu, Fan-Yi Meng, Jia-Hui Fu, Qun Wu, and Jun Hua  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4494-4502 (2012)
http://dx.doi.org/10.1364/OE.20.004494


View Full Text Article

Enhanced HTML    Acrobat PDF (797 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a multi-band slow light metamaterial is presented and investigated. The metamaterial unit cell is composed of three cut wires of different sizes and parallel to each other. Two transparency windows induced by two-two overlaps of absorption bands of three cut wires are observed. The multi-band transmission characteristics and the slow light properties of metamaterial are verified by numerical simulation, which is in a good agreement with theoretical predictions. The impacts of structure parameters on transparency windows are also investigated. Simulation results show the spectral properties can be tuned by adjusting structure parameters of metamaterial. The equivalent circuit model and the synthesis method of the multi-band slow light metamaterial are presented. It is seen from simulation results that the synthesis method accurately predicts the center frequency of the multi-band metamaterial, which opens a door to a quick and accurate construction for multi-band slow light metamaterial.

© 2012 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.4010) Other areas of optics : Microwaves
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: December 22, 2011
Revised Manuscript: February 3, 2012
Manuscript Accepted: February 3, 2012
Published: February 8, 2012

Citation
Lei Zhu, Fan-Yi Meng, Jia-Hui Fu, Qun Wu, and Jun Hua, "Multi-band slow light metamaterial," Opt. Express 20, 4494-4502 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4494


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001). [CrossRef] [PubMed]
  2. R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98(4), 043902 (2007). [CrossRef] [PubMed]
  3. T. Lauprêtre, J. Ruggiero, R. Ghosh, F. Bretenaker, and F. Goldfarb, “Observation of electromagnetically induced transparency and slow light in the dark state--bright state basis,” Opt. Express 17(22), 19444–19450 (2009). [CrossRef] [PubMed]
  4. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13(24), 9909–9915 (2005). [CrossRef] [PubMed]
  5. G. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101(9), 093109 (2007). [CrossRef]
  6. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005). [CrossRef] [PubMed]
  7. C. X. Lin, W. Zhang, Y. D. Huang, and J. D. Peng, “Zero dispersion slow light with low leakage loss in defect Bragg fiber,” Appl. Phys. Lett. 90(3), 031109 (2007). [CrossRef]
  8. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007). [CrossRef]
  9. S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, D. L. Kwong, and C. W. Wong, “Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities,” Appl. Phys. Lett. 96(22), 221111 (2010). [CrossRef]
  10. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljaci?, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005). [CrossRef] [PubMed]
  11. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005). [CrossRef]
  12. V. T. T. Thuy, N. T. Tung, J. W. Park, V. D. Lam, Y. P. Lee, and J. Y. Rhee, “Highly dispersive transparency in coupled metamaterial,” J. Opt. 12(11), 115102 (2010). [CrossRef]
  13. F. Y. Meng, J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, “Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions,” J. Phys. D Appl. Phys. 44(26), 265402 (2011). [CrossRef]
  14. F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011). [CrossRef]
  15. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002). [CrossRef]
  16. A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011). [CrossRef] [PubMed]
  17. J. Tidström, C. W. Neff, and L. M. Andersson, “Photonic crystal cavity embedded in electromagnetically induced transparency media,” J. Opt. 12(3), 035105 (2010). [CrossRef]
  18. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010). [CrossRef] [PubMed]
  19. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef] [PubMed]
  20. Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010). [CrossRef] [PubMed]
  21. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [CrossRef] [PubMed]
  22. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009). [CrossRef] [PubMed]
  23. E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006). [CrossRef] [PubMed]
  24. K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010). [CrossRef]
  25. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008). [CrossRef] [PubMed]
  26. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009). [CrossRef] [PubMed]
  27. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009). [CrossRef] [PubMed]
  28. M. Kang, Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100(4), 699–703 (2010). [CrossRef]
  29. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009). [CrossRef]
  30. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004). [CrossRef]
  31. Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring mach-zehnder interferometer,” J. Opt. Soc. Am. B 28(1), 28–36 (2011). [CrossRef]
  32. X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
  33. J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010). [CrossRef] [PubMed]
  34. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010). [CrossRef] [PubMed]
  35. R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011). [CrossRef]
  36. X. R. Jin, J. Park, H. Y. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011). [CrossRef] [PubMed]
  37. S. S. Mohan, “The design, modeling and optimization of on-chip inductor and transformer circuits,” Ph.D. Thesis, Stanford University, 153–155 (1999).
  38. F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE T. Microwave Theory Tech. 55(12), 2865–2873 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited