OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4537–4547

Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets

T. Cesca, P. Calvelli, G. Battaglin, P. Mazzoldi, and G. Mattei  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4537-4547 (2012)
http://dx.doi.org/10.1364/OE.20.004537


View Full Text Article

Enhanced HTML    Acrobat PDF (1038 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the nonlinear optical properties of Au-Ag nanoplanets produced by ion implantation and irradiation in silica, experimentally investigated by means of the single beam z-scan technique. The measurements provided experimental evidence of the intense local-field enhancement effect theoretically demonstrated for these plasmonic nanosystems. In particular, this has a dramatic impact on their nonlinear absorption behavior and results in a tunable changeover from reverse saturable absorption to saturable absorption by slightly varying the pump intensity and in the possibility to activate and observe nonlinear phenomena of the electron dynamics otherwise unaccessible in the intensity range that can be employed to study these materials. Finally, for the nanoplanet configuration we found a dramatic decrease of the intensity-dependent absorption coefficient, which could be very promising for obtaining optical gain materials.

© 2012 OSA

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(310.3840) Thin films : Materials and process characterization
(160.4236) Materials : Nanomaterials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 14, 2011
Revised Manuscript: November 11, 2011
Manuscript Accepted: November 13, 2011
Published: February 9, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
T. Cesca, P. Calvelli, G. Battaglin, P. Mazzoldi, and G. Mattei, "Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets," Opt. Express 20, 4537-4547 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4537


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon.4, 83–91 (2010). [CrossRef]
  2. S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev.35, 209 (2006). [CrossRef] [PubMed]
  3. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111, 3828–3857 (2011). [CrossRef] [PubMed]
  4. P. Genevet, J. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10, 4880–4883 (2010). [CrossRef]
  5. S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453, 757–760 (2008). [CrossRef] [PubMed]
  6. G. Mattei, P. Mazzoldi, M. Post, D. Buso, M. Guglielmi, and A. Martucci, “Cookie-like Au/NiO nanoparticles with optical Gas-Sensing properties,” Adv. Mater.19, 561–564 (2007). [CrossRef]
  7. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008). [CrossRef] [PubMed]
  8. G. Mattei, P. Mazzoldi, and H. Bernas, “Metal nanoclusters for optical properties,” in Materials Science with Ion Beams, H. Bernas, ed. (Springer-Verlag, BerlinHeidelberg, 2010), pp. 287–316.
  9. A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review,” Rev. Adv. Mater. Sci.27, 115–145 (2011).
  10. R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B84, 295–302 (2006). [CrossRef]
  11. Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, “Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles,” Phys. Rev. B79, 045410 (2009). [CrossRef]
  12. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, BerlinHeidelberg, 1995).
  13. G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett.4, 1853–1857 (2004). [CrossRef]
  14. E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index,” Appl. Surf. Sci.247, 390–395 (2005). [CrossRef]
  15. O. Plaksin, Y. Takeda, H. Amekura, and N. Kishimoto, “Radiation-induced differential optical absorption of metal nanoparticles,” Appl. Phys. Lett.88, 201915 (2006).
  16. M. Liu, P. Guyot-Sionnest, T. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B76, 235428 (2007). [CrossRef]
  17. E. Valentin, H. Bernas, C. Ricolleau, and F. Creuzet, “Ion beam “photography”: Decoupling nucleation and growth of metal clusters in glass,” Phys. Rev. Lett.86, 99 (2001). [CrossRef] [PubMed]
  18. P. Kluth, B. Johannessen, G. J. Foran, D. J. Cookson, S. M. Kluth, and M. C. Ridgway, “Disorder and cluster formation during ion irradiation of au nanoparticles in sio2,” Phys. Rev. B74, 014202 (2006). [CrossRef]
  19. R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B76, 205431 (2007). [CrossRef]
  20. P. Mazzoldi and G. Mattei, “Synthesis of metal nanclusters by using ion implantation,” in Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size-Control, B. Corain, G. Schmid, and N. Toshima, eds. (Elservier, Amsterdam, 2007), p. 281.
  21. G. Mattei, G. De Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, “Chemical- or Radiation-Assisted selective dealloying in bimetallic nanoclusters,” Phys. Rev. Lett.90, 085502 (2003). [CrossRef] [PubMed]
  22. V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, “Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2,” J. Non-Cryst. Solids345–346, 685–688 (2004). [CrossRef]
  23. G. Mattei, V. Bello, P. Mazzoldi, G. Pellegrini, C. Sada, C. Maurizio, and G. Battaglin, “Modification of composition and structure of bimetallic nanocluster in silica by ion beam irradiation,” Nucl. Instrum. Meth. in Phys. Res. B240, 128–132 (2005). [CrossRef]
  24. G. Pellegrini, V. Bello, G. Mattei, and P. Mazzoldi, “Local-field enhancement and plasmon tuning in bimetallic nanoplanets,” Opt. Express15, 10097–10102 (2007). [CrossRef] [PubMed]
  25. M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990). [CrossRef]
  26. G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett.78, 3953–3955 (2001). [CrossRef]
  27. R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” Journal of Non-Crystalline Solids322, 300–305 (2003). [CrossRef]
  28. S.-L. Guo, J. Yan, L. Xu, B. Gu, X.-Z. Fan, H.-T. Wang, and N. Ming, “Second z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A: Pure Appl. Opt.4, 504–508 (2002). [CrossRef]
  29. B. Gu, Y. Fan, J. Chen, H. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys.102, 083101 (2007). [CrossRef]
  30. R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B62, 13160 (2000). [CrossRef]
  31. U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys.104, 073107 (2008). [CrossRef]
  32. O. Plaksin, Y. Takeda, H. Amekura, N. Kishimoto, and S. Plaksin, “Saturation of nonlinear optical absorption of metal-nanoparticle composites,” J. Appl. Phys.103, 114302 (2008). [CrossRef]
  33. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and reverse saturated absorption of Cu:SiO2 at λ = 532 nm,” Phys. Status Solidi (b)241, R1–R4 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited