OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4583–4602

3D scanning characteristics of an amorphous silicon position sensitive detector array system

Javier Contreras, Luis Gomes, Sergej Filonovich, Nuno Correia, Elvira Fortunato, Rodrigo Martins, and Isabel Ferreira  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4583-4602 (2012)
http://dx.doi.org/10.1364/OE.20.004583


View Full Text Article

Enhanced HTML    Acrobat PDF (1798 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The 3D scanning electro-optical characteristics of a data acquisition prototype system integrating a 32 linear array of 1D amorphous silicon position sensitive detectors (PSD) were analyzed. The system was mounted on a platform for imaging 3D objects using the triangulation principle with a sheet-of-light laser. New obtained results reveal a minimum possible gap or simulated defect detection of approximately 350 μm. Furthermore, a first study of the angle for 3D scanning was also performed, allowing for a broad range of angles to be used in the process. The relationship between the scanning angle of the incident light onto the object and the image displacement distance on the sensor was determined for the first time in this system setup. Rendering of 3D object profiles was performed at a significantly higher number of frames than in the past and was possible for an incident light angle range of 15 ° to 85 °.

© 2012 OSA

OCIS Codes
(040.1240) Detectors : Arrays
(110.6880) Imaging systems : Three-dimensional image acquisition
(150.6910) Machine vision : Three-dimensional sensing
(160.2750) Materials : Glass and other amorphous materials
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Detectors

History
Original Manuscript: November 10, 2011
Revised Manuscript: January 6, 2012
Manuscript Accepted: January 16, 2012
Published: February 9, 2012

Citation
Javier Contreras, Luis Gomes, Sergej Filonovich, Nuno Correia, Elvira Fortunato, Rodrigo Martins, and Isabel Ferreira, "3D scanning characteristics of an amorphous silicon position sensitive detector array system," Opt. Express 20, 4583-4602 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4583


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. G. Batchelor and P. F. Whelan, Intelligent vision systems for industry (Springer Verlag, 1997).
  2. J. Hochberg, “Machines should not see as people do, but must know how people see,” Comput. Vis. Graph. Image Process.37(2), 221–237 (1987). [CrossRef]
  3. R. G. Dorsch, G. Häusler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt.33(7), 1306–1314 (1994). [CrossRef] [PubMed]
  4. T. Sawatari, “Real-time noncontacting distance measurement using optical triangulation,” Appl. Opt.15(11), 2821–2824 (1976). [CrossRef] [PubMed]
  5. T. A. Clarke, K. T. V. Grattan, and N. E. Lindsey, “Laser-based triangulation techniques in optical inspection of industrial structures,” Proc. SPIE1332, 474–486 (1991). [CrossRef]
  6. S. Klancnik, J. Balic, and P. Planincic, “Obstacle detection with active laser triangulation,” Adv. Prod. Eng. Manage.2, 79–90 (2007).
  7. A. Peiravi and B. Taabbodi, “A reliable 3D laser triangulation-based scanner with a new simple but accurate procedure for finding scanner parameters,” Am. J. Sci.6, 80–85 (2010).
  8. V. Lombardo, T. Marzulli, C. Pappalettere, and P. Sforza, “A time-of-scan laser triangulation technique for distance measurements,” Opt. Lasers Eng.39(2), 247–254 (2003). [CrossRef]
  9. V. S. Mikhlyaev, “Influence of a tilt of mirror surface on the measurement accuracy of laser triangulation rangefinder,” J. Phys.: Conf. Ser.48, 739–744 (2006). [CrossRef]
  10. P. B. Petrović, “Rubberized cord thickness measurement based on laser triangulation, Part I: technology,” FME Trans.35, 77–84 (2007).
  11. V. Raja and K. J. Fernandes, Reverse engineering - an industrial perspective (Springer, 2008).
  12. T. H. Hoo and M. R. Arshad, “A simple surface mapping technique using laser triangulation method,” presented at ICOLA, Jakarta, Indonesia, (2002).
  13. M. Johanesson and A. Astrom, “Sheet-of-light range imaging with MAPP2200,” Technical Report LiTHISY-1–140 1, Dept. EE, Linköping University, Linköping, Sweden, SE-581 83 (personal communication, 1992).
  14. M. Johannesson, “Sheet-of-light range imaging in: linköping studies in science and technology,” Dept. EE, Linköping University, Linköping, Sweden, SE-581 83 (personal communication, 1993).
  15. M. Johannesson, “Can sorting using sheet-of-light range imaging and MAPP2200,” in Conference Proceedings., International Conference on Systems, Man and Cybernetics, 'Systems Engineering in the Service of Humans' (1993), 3, 17–20, 325–330.
  16. K. Araki, M. Shimizu, T. Noda, Y. Chiba, Y. Tsuda, K. Ikegaya, K. Sannomiya, and M. Gomi, “High speed and continuous 3-D measurement system,” in Proceedings., 11th IAPR International Conference on Pattern Recognition, Vol. IV. Conference D: Architectures for Vision and Pattern Recognition (1992), 30, 62–65.
  17. J. Contreras, I. Ferreira, M. Idzikowski, S. Filonovich, S. Pereira, E. Fortunato and R. Martins, “Amorphous silicon position sensitive detector array for fast 3D object profiling,” IEEE Sens. J. (submitted).
  18. J. Contreras, C. Baptista, I. Ferreira, D. Costa, S. Pereira, H. Águas, E. Fortunato, R. Martins, R. Wierzbicki, and H. Heerlein, “Amorphous silicon position sensitive detectors applied to micropositioning,” J. Non-Cryst. Solids352(9-20), 1792–1796 (2006). [CrossRef]
  19. J. Contreras, D. Costa, S. Pereira, E. Fortunato, R. Martins, R. Wierzbicki, H. Heerlein, and I. Ferreira, “Micro cantilever movement detection with an amorphous silicon array of position sensitive detectors,” Sensors (Basel, Switzerland)10(9), 8173–8184 (2010). [CrossRef] [PubMed]
  20. R. Martins, E. Fortunato, J. Figueiredo, F. Soares, D. Brida, V. Silva, and A. Cabrita, “32 Linear array position sensitive detector based on NIP and hetero a-Si:H microdevices,” J. Non-Cryst. Solids299–302, 1283–1288 (2002). [CrossRef]
  21. W. Schottky, “Über den entstehungsort der photoelektronen in kupfer-kupferoxydul-photozellen,” Phys. Z.31, 913–925 (1930).
  22. J. T. Wallmark, “A new semiconductor photocell using lateral photo effect,” Proc. IRE 45, 474–483 (1957).
  23. L. D. Hutcheson, “Practical electro-optic deflection measurements system,” Opt. Eng.15, 61–63 (1976).
  24. S. Middelhoek and D. J. W. Noorlag, Silicon microtransducers: a new generation of measuring elements, modern electronic measuring systems (Delft University Press, 1978), Chap. 1.
  25. H. Walcher, Position sensing - angle and distance measurement for engineers (Butterworth-Heinemann, Oxford, 1994).
  26. R. Ohba, Intelligent sensor technology (Wiley, 1992).
  27. SiTek Electro Optics AB, Ögärdesvägen, Partille, Sweden, 13A S-433 30. www.sitek.se
  28. R. F. P. Martins and E. M. C. Fortunato, “Interpretation of the static and dynamic characteristics of 1-D thin film position sensitive detectors based on a-Si:H p-i-n diodes,” IEEE Trans. Electron. Dev.43(12), 2143–2152 (1996). [CrossRef]
  29. J. Geist, “Sensor technology and devices,” L. Ristik, ed. (Artech House Publishers, 1994).
  30. E. Fortunato, F. Soares, P. Teodoro, N. Guimarães, M. Mendes, H. Águas, V. Silva, and R. Martins, “Characteristics of a linear array of a-Si:H thin film position sensitive detector,” Thin Solid Films337(1-2), 222–225 (1999). [CrossRef]
  31. A. Cabrita, J. Figueiredo, L. Pereira, H. Aguas, V. Silva, D. Brida, I. Ferreira, E. Fortunato, and R. Martins, “Thin film position sensitive detectors based on pin amorphous silicon carbide structures,” Appl. Surf. Sci.184(1-4), 443–447 (2001). [CrossRef]
  32. L. Pereira, D. Brida, E. Fortunato, I. Ferreira, H. Aguas, V. Silva, M. F. M. Costa, V. Teixeira, and R. Martins, “a-Si:H interface optimisation for thin film position sensitive detectors produced on polymeric substrates,” J. Non-Cryst. Solids299–302, 1289–1294 (2002). [CrossRef]
  33. E. Fortunato, L. Pereira, H. Águas, I. Ferreira, and R. Martins, “Flexible a-Si:H position sensitive detectors,” Proc. IEEE93(7), 1281–1286 (2005). [CrossRef]
  34. R. Martins, G. Lavareda, E. Fortunato, F. Soares, L. Fernandes, and L. Ferreira, “A linear array position sensitive detector based on amorphous silicon,” Rev. Sci. Instrum.66(11), 5317–5321 (1995). [CrossRef]
  35. R. Martins and E. Fortunato, “Thin film position sensitive detectors: from 1D to 3D applications,” in the technology and applications of amorphous silicon, R. Street, ed. (Spring, Verlagen, 2000).
  36. R. Martins, L. Raniero, L. Pereira, D. Costa†, H. Águas, S. Pereira, L. Silva, A. Gonçalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Philos. Mag.89, 2699–2721 (2009). [CrossRef]
  37. H. Águas, S. K. Ram, A. Araujo, D. Gaspar, A. Vicente, S. A. Filonovich, E. Fortunato, R. Martins, and I. Ferreira, “Silicon thin film solar cells on commercial tiles,” Energy Environ. Sci.4(11), 4620–4632 (2011). [CrossRef]
  38. R. Martins, A. Macarico, I. Ferreira, R. Nunes, A. Bicho, and E. Fortunato, “Highly conductive and highly transparent n-type microcrystalline silicon thin films,” Thin Solid Films303(1-2), 47–52 (1997). [CrossRef]
  39. C. A. Klein and R. W. Bierig, “Pulse-response characteristics of position-sensitive photodetectors,” IEEE Trans. Electron. Devices21(8), 532–537 (1974). [CrossRef]
  40. W. P. Connors, “Lateral photodetector operating in the fully reverse-biased mode,” IEEE Trans. Electron. Devices18(8), 591–596 (1971). [CrossRef]
  41. D. J. W. Noorlag and S. Middelhoek, “Two dimensional position-sensitive photodetector with high linearity made with standard i.c.-technology,” IEE J. Sol. State Electron. Devices3, 75–82 (1979).
  42. E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandes, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sensor Actuators, A51, 135–142 (1996).
  43. J. Henry and J. Livingstone, “Sputtered a-Si:H thin-film position sensitive detectors,” J. Phys. D Appl. Phys.34(13), 1939–1942 (2001). [CrossRef]
  44. A. Fantoni, M. Viera, and R. Martins, “Influence of the intrinsic layer characteristics on a-Si: H p-i-n solar cell performance analysed by means of a computer simulation,” Sol. Energy Mater. Sol. Cells73(2), 151–162 (2002). [CrossRef]
  45. L. Raniero, I. Ferreira, A. Pimentel, A. Goncalves, P. Canhola, E. Fortunato, and R. Martins, “Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings,” Thin Solid Films511–512, 295–298 (2006). [CrossRef]
  46. R. Martins and E. Fortunato, “Lateral Photoeffect in large area one-dimensional thin-film position-sensitive detectors based in a-Si:H p-i-n devices,” Rev. Sci. Instrum.66(4), 2927–2934 (1995). [CrossRef]
  47. Z. H. Hu, X. B. Liao, H. W. Diao, Y. Cai, S. B. Zhang, E. Fortunato, and R. Martins, “Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells,” J. Non-Cryst. Solids352(9-20), 1900–1903 (2006). [CrossRef]
  48. E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandes, “High detection resolution presented by large-area thin film position-sensitive detectors,” Proc. SPIE 2397, 259–270 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited