OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4603–4618

Optical coherence tomography for quality assessment of embedded microchannels in alumina ceramic

Rong Su, Mikhail Kirillin, Peter Ekberg, Arne Roos, Ekaterina Sergeeva, and Lars Mattsson  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4603-4618 (2012)
http://dx.doi.org/10.1364/OE.20.004603


View Full Text Article

Enhanced HTML    Acrobat PDF (1790 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Large-scale and cost-effective manufacturing of ceramic micro devices based on tape stacking requires the development of inspection systems to perform high-resolution in-process quality control of embedded manufactured cavities, metal structures and defects. With an optical coherence tomography (OCT) system operating at 1.3 μm and a dedicated automated line segmentation algorithm, layer thicknesses can be measured and laser-machined channels can be verified in alumina ceramics embedded at around 100 μm depth. Monte Carlo simulations are employed to analyze the abilities of OCT in imaging of the embedded channels. The light scattering parameters required as input data for simulations are evaluated from the integrating sphere measurements of collimated and diffuse transmittance spectra using a reconstruction algorithm based on refined diffusion approximation approach.

© 2012 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(100.0100) Image processing : Image processing
(110.4500) Imaging systems : Optical coherence tomography
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(290.0290) Scattering : Scattering
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: November 7, 2011
Revised Manuscript: January 15, 2012
Manuscript Accepted: January 30, 2012
Published: February 9, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Rong Su, Mikhail Kirillin, Peter Ekberg, Arne Roos, Ekaterina Sergeeva, and Lars Mattsson, "Optical coherence tomography for quality assessment of embedded microchannels in alumina ceramic," Opt. Express 20, 4603-4618 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4603


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Bredeau and L. Federzoni, “Multilayer: a large scale production of micro devices via new rolled multi material layered 3D shaping technology,” in Proceedings of the 4M/ICOMM 2009 Conference, V. Saile, K.Ehmann and S. Dimov, ed. (Karlsruhe, 2009), 419–422.
  2. A. S. Birks and R. E. Green, Ultrasonic Testing 2nd ed (Columbus, 1991).
  3. P. Zinin and W. Weise, “Theory and applications of acoustic microscopy”, in Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization, T. Kundu, ed. (CRC Press, Boca Raton, 2003)
  4. N. Chawla, J. J. Williams, X. Deng, C. McClimon, L. Hunter, and S. H. Lau, “Three-dimensional characterization and modeling of porosity in powder metallurgical steels,” Int. J. Powder Metall.45, 19–28 (2009).
  5. S. R. Stock, MicroComputed Tomography: Methodology and Applications (CRC Press, 2008).
  6. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker, 2002).
  7. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003). [CrossRef]
  8. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49(16), D30–D61 (2010). [CrossRef] [PubMed]
  9. C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum.78(12), 123108 (2007). [CrossRef] [PubMed]
  10. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B88(3), 337–357 (2007). [CrossRef]
  11. M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study”, J. Eur. Opt. Soc.- Rapid Publ.2, 07031 (2007). [CrossRef]
  12. M. Bashkansky, M. D. Duncan, M. Kahn, D. Lewis III, and J. Reintjes, “Subsurface defect detection in ceramics by high-speed high-resolution optical coherent tomography,” Opt. Lett.22(1), 61–63 (1997). [CrossRef] [PubMed]
  13. M. D. Duncan, M. Bashkansky, and J. Reintjes, “Subsurface defect detection in materials using optical coherence tomography,” Opt. Express2(13), 540–545 (1998). [CrossRef] [PubMed]
  14. M. Bashkansky, D. Lewis, V. Pujari, J. Reintjes, and H. Y. Yu, “Subsurface detection and characterization of Hertzian cracks in Si3N4 balls using optical coherence tomography,” NDT Int.34(8), 547–555 (2001). [CrossRef]
  15. J. Veilleux, C. Moreau, D. Lévesque, M. Dufour, and M. I. And, “Boulos, “Optical coherence tomography for inspection of highly scattering ceramic media: glass powders and plasma-sprayed coatings,” Rev. Quantitative Nondestruc. Eval.25, 1059–1066 (2006).
  16. J. Manara, R. Caps, F. Raether, and J. Fricke, “Characterization of the pore structure of alumina ceramics by diffuse radiation propagation in the near infrared,” Opt. Commun.168(1-4), 237–250 (1999). [CrossRef]
  17. J. G. J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys.45(1), 216–220 (1974). [CrossRef]
  18. R. Apetz and M. P. B. van Bruggen, “Transparent alumina: a light-scattering model,” J. Am. Ceram. Soc.86(3), 480–486 (2003). [CrossRef]
  19. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990). [CrossRef]
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
  21. C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun.154(4), 179–185 (1998). [CrossRef]
  22. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95–105 (1999). [CrossRef]
  23. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A24(7), 1901–1910 (2007). [CrossRef] [PubMed]
  24. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995). [CrossRef] [PubMed]
  25. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol.47(13), 2281–2299 (2002). [CrossRef] [PubMed]
  26. M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach,” Opt. Express18(21), 21714–21724 (2010). [CrossRef] [PubMed]
  27. Swerea IVF, Mölndal (head office), P O Box 104, SE-431 22 Mölndal, Sweden.
  28. I. H. Malitson, F. V. Murphy, and W. S. Rodeny, “Refractive index of synthetic sapphire,” J. Opt. Soc. Am.48, 72 (1958). [CrossRef]
  29. A. Ishimaru, Wave Propagation and Scattering in Random Media, vol.1 (Plenum Press, New York, 1978).
  30. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A11(10), 2727–2741 (1994). [CrossRef] [PubMed]
  31. L. S. Dolin and E. A. Sergeeva, “A model of irradiance distribution for a directed point source in an infinite weakly absorbing turbid medium,” Radiophys. Quantum Electron.44(11), 858–865 (2001). [CrossRef]
  32. R. C. Gonzalez and R. E. Woods, Digital Image Processing 3rd edition (Prentice Hall, 2008).
  33. A. Roos, “Use of an integrating sphere in solar energy research,” Sol. Energy Mater. Sol. Cells30(1), 77–94 (1993). [CrossRef]
  34. C. Pecharromán, G. Mata-Osoro, L. A. Díaz, R. Torrecillas, and J. S. Moya, “On the transparency of nanostructured alumina: Rayleigh-Gans model for anisotropic spheres,” Opt. Express17(8), 6899–6912 (2009). [CrossRef] [PubMed]
  35. R. Su and L. Mattsson, Depth profiling in alumina ceramic by optical coherence tomography,” in Proceedings of the 4M 2010 Conference, B Fillon, C. Khan-Malek, S.Dimov, ed., (Bourg en Bresse, 2010), 316–319.
  36. S. K. Kachigan, Statistical Analysis (Radius Press, 1986).
  37. L. Mattsson, V. Schulze, and J. Schneider, Ceramics Processing in Microtechnology (Whittles Publishing, 2009), Chap. 22.
  38. Thorlabs Sweden AB, Mölndalsvägen 3, 400 20 Gothenburg, Sweden.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited