OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4653–4662

Simultaneous measurements of absorption spectrum and refractive index in a microfluidic system

Lars Egil Helseth  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 4653-4662 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1304 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The characterization of dyes in various solvents requires determination of the absorption spectrum of the dye as well as the refractive index of the solvent. Typically, the refractive index of the solvent and the absorption spectrum of the solute are measured using separate experimental setups where significant liquid volumes are required. In this work the first optical measurement system that is able to do simultaneous measurements of the refractive index of the solvent and the spectral properties of the solute in a microscopic volume is presented. The laser dye Rhodamine 6G in glycerol is investigated, and the refractive index of the solution is monitored using the interference pattern of the light scattered off the channel, while its spectral properties is found by monitoring reflected light from the channel.

© 2012 OSA

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(260.3160) Physical optics : Interference
(300.1030) Spectroscopy : Absorption

ToC Category:

Original Manuscript: December 7, 2011
Revised Manuscript: January 30, 2012
Manuscript Accepted: February 4, 2012
Published: February 9, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Lars Egil Helseth, "Simultaneous measurements of absorption spectrum and refractive index in a microfluidic system," Opt. Express 20, 4653-4662 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Kuswandi, J. Nuriman, J. Huuskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta601(2), 141–155 (2007). [CrossRef] [PubMed]
  2. J. Hübner, K. B. Mogensen, A. M. Jorgensen, P. Friis, P. Telleman, and J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum.72(1), 229–233 (2001). [CrossRef]
  3. X. T. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express19(1), 387–398 (2011). [CrossRef] [PubMed]
  4. A. Sabatyan and M. T. Tavassoly, “Determination of refractive indices of liquids by Fresnel diffraction,” Opt. Laser Technol.41(7), 892–896 (2009). [CrossRef]
  5. M. T. Tavassoly and A. Saber, “Optical refractometry based on Fresnel diffraction from a phase wedge,” Opt. Lett.35(21), 3679–3681 (2010). [CrossRef] [PubMed]
  6. M. A. Khashan and A. Y. Nassif, “Accurate measurement of the refractive indices of solids and liquids by the double-layer interferometer,” Appl. Opt.39(32), 5991–5997 (2000). [CrossRef] [PubMed]
  7. S. H. Lu, S. P. Pan, T. S. Liu, and C. F. Kao, “Liquid refractometer based on immersion diffractometry,” Opt. Express15(15), 9470–9475 (2007). [CrossRef] [PubMed]
  8. H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “Phase-transmission-grating-based compact optofluidic refractometer,” Opt. Lett.34(12), 1753–1755 (2009). [CrossRef] [PubMed]
  9. I. Niskanen, J. Räty, and K. E. Peiponen, “A method for the detection of the refractive index of irregular shape solid pigments in light absorbing liquid matrix,” Talanta81(4-5), 1322–1324 (2010). [CrossRef] [PubMed]
  10. I. Niskanen, J. Räty, and K. E. Peiponen, “Optical sensing of concentration and refractive index of pigments in a suspension,” Appl. Opt.49(17), 3428–3433 (2010). [CrossRef] [PubMed]
  11. S. Singh, “Refractive index measurements and its applications,” Phys. Scr.65(2), 167–180 (2002). [CrossRef]
  12. B. Xiong and J. Hu, “Laser-based refractive index determination for micro-channels,” Analyst (Lond.)136(4), 635–641 (2011). [CrossRef]
  13. D. J. Bornhop and N. J. Dovichi, “Simple nanoliter refractive index detector,” Anal. Chem.58(2), 504–505 (1986). [CrossRef]
  14. S. Calixto, M. Rosete-Aguilar, D. Monzon-Hernandez, and V. P. Minkovich, “Capillary refractometer integrated in a microfluidic configuration,” Appl. Opt.47(6), 843–848 (2008). [CrossRef] [PubMed]
  15. C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express19(22), 21540–21551 (2011). [CrossRef] [PubMed]
  16. K. Swinney, D. Markov, and D. J. Bornhop, “Micro-interferometric backscatter detection using a diode laser,” Anal. Chim. Acta400(1-3), 265–280 (1999). [CrossRef]
  17. D. A. Markov, K. Swinney, and D. J. Bornhop, “Label-free molecular interaction determinations with nanoscale interferometry,” J. Am. Chem. Soc.126(50), 16659–16664 (2004). [CrossRef] [PubMed]
  18. D. Brennan, P. Lambkin, and P. Galvin, “Refractive index measurements in a shallow multichannel microfluidic system,” Meas. Sci. Technol.19(8), 085403 (2008). [CrossRef]
  19. J. Kameoka and H. G. Craighead, “Nanofabricated refractive index sensor based on photon tunnelling in nanofluidic channel,” Sens. Acta B77(3), 632–637 (2001). [CrossRef]
  20. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett.30(11), 1273–1275 (2005). [CrossRef] [PubMed]
  21. V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express13(19), 7609–7614 (2005). [CrossRef] [PubMed]
  22. Y. H. Tsai and P. K. Wei, “Sensitive liquid refractive index sensors using tapered optical fiber tips,” Opt. Lett.35(7), 944–946 (2010). [CrossRef] [PubMed]
  23. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.34(3), 322–324 (2009). [CrossRef] [PubMed]
  24. L. Lei, H. Li, J. Shi, and Y. Chen, “Microfluidic refractometer with integrated optical fibers and end-facet transmission gratings,” Rev. Sci. Instrum.81(2), 023103 (2010). [CrossRef] [PubMed]
  25. A. C. Bedoya, C. Monat, P. Domachuk, C. Grillet, and B. J. Eggleton, “Measuring the dispersive properties of liquids using a microinterferometer,” Appl. Opt.50(16), 2408–2412 (2011). [CrossRef] [PubMed]
  26. A. Marin, M. Joanicot, and P. Tabeling, “Microchannel edge refractometry,” Sens. Acta B148(1), 330–336 (2010). [CrossRef]
  27. S. Y. Yoon and S. Yang, “Microfluidic refractometer with micro-image defocusing,” Lab Chip11(5), 851–855 (2011). [CrossRef] [PubMed]
  28. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
  29. D. A. Hinckley, P. Seybold, and D. P. Borris, “Solvatochromism and thermochromism of rhodamine solutions,” Spectochmica Acta.42(6), 747–754 (1986). [CrossRef]
  30. C. Reichardt, “Solvatochromic dyes as solvent polarity indicators,” Chem. Rev.94(8), 2319–2358 (1994). [CrossRef]
  31. D. G. Yablon and A. M. Schilowitz, “Solvatochromism of nile red in nonpolar solvents,” Appl. Spectrosc.58(7), 843–847 (2004). [CrossRef] [PubMed]
  32. L. E. Helseth and T. Skodvin, “Optical monitoring of low-field magnetophoretic separation of particles,” Meas. Sci. Technol.20(9), 095202 (2009). [CrossRef]
  33. J. E. Selwyn and J. I. Steinfeld, “Aggregation equilibria of xanthene dyes,” J. Phys. Chem.76(5), 762–774 (1972). [CrossRef]
  34. D. Toptygin, B. Z. Packard, and L. Brand, “Resolution of absorption spectra of rhodamine 6G aggregates in aqueous solution using the law of mass action,” Chem. Phys. Lett.277(5-6), 430–435 (1997). [CrossRef]
  35. W. Leupacher and A. Penzkofer, “Refractive-index measurement of absorbing condensed media,” Appl. Opt.23(10), 1554–1558 (1984). [CrossRef] [PubMed]
  36. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited