OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4776–4783

Experimental demonstration of light bending at optical frequencies using a non-homogenizable graded photonic crystal

Khanh-Van Do, Xavier Le Roux, Delphine Marris-Morini, Laurent Vivien, and Eric Cassan  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4776-4783 (2012)
http://dx.doi.org/10.1364/OE.20.004776


View Full Text Article

Enhanced HTML    Acrobat PDF (2007 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experimental results on light bending in a non-homogenizable graded photonic crystal operating at optical wavelengths are presented in this paper. A square lattice silicon on insulator photonic crystal made of a two-dimensional chirp of the air-hole filling factor is exploited to produce the bending effect in a near bandgap frequency range. The sensitivity of light paths to wavelength tuning is also exploited to show demultiplexing capability with low insertion loss (<2dB) and low crosstalk (~-20dB). This experimental demonstration opens opportunities for light manipulation using a generalized two-dimensional chirp of photonic crystal lattice parameters. It also constitutes an alternative solution to the use of photonic metamaterials combining dielectric and metallic materials with sub-wavelength unit cells.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: November 23, 2011
Revised Manuscript: January 15, 2012
Manuscript Accepted: February 6, 2012
Published: February 10, 2012

Citation
Khanh-Van Do, Xavier Le Roux, Delphine Marris-Morini, Laurent Vivien, and Eric Cassan, "Experimental demonstration of light bending at optical frequencies using a non-homogenizable graded photonic crystal," Opt. Express 20, 4776-4783 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4776


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  3. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley and Sons, 2006), pp. 211–221.
  4. Z. Saïd, A. Sihvola, and A. P. Vinogradov, Metamaterials and Plasmonics: Fundamentals, Modelling, Applications (Springer-Verlag, 2008), pp. 3–10, Chap. 3, p. 106.
  5. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett.33(1), 43–45 (2008). [CrossRef] [PubMed]
  6. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett.100(6), 063903 (2008). [CrossRef] [PubMed]
  7. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express16(15), 11555–11567 (2008). [CrossRef] [PubMed]
  8. Z. L. Mei and T. J. Cui, “Arbitrary bending of electromagnetic waves using isotropic materials,” J. Appl. Phys.105(10), 104913 (2009). [CrossRef]
  9. N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express17(17), 14872–14879 (2009). [CrossRef] [PubMed]
  10. W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Arbitrary waveguide bends using isotropic and homogeneous metamaterial,” Appl. Phys. Lett.96(4), 041102 (2010). [CrossRef]
  11. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009). [CrossRef] [PubMed]
  12. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009). [CrossRef]
  13. P. S. J. Russel, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt.38(8), 1599–1619 (1991). [CrossRef]
  14. P. S. J. Russel and T. A. Birks, “Hamiltonian optics of nonuniform photonic crystals,” J. Lightwave Technol.17(11), 1982–1988 (1999). [CrossRef]
  15. E. Centeno, D. Cassagne, and J.-P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B73(23), 235119 (2006). [CrossRef]
  16. K. Ren and X. Ren, “Controlling light transport by using a graded photonic crystal,” Appl. Opt.50(15), 2152–2157 (2011). [CrossRef] [PubMed]
  17. E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and J. M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett.92(13), 133501 (2008). [CrossRef]
  18. E. Cassan, K. V. Do, C. Caer, D. Marris-Morini, and L. Vivien, “Short-wavelength light propagation in graded photonic crystals,” J. Lightwave Technol.29(13), 1937–1943 (2011). [CrossRef]
  19. areV. K. Do, X. L. Roux, C. Caer, D. Marris-Morini, N. Izard, L. Vivien, and E. Cassan, “Wavelength demultiplexer based on a two-dimensional graded photonic crystal,” IEEE Photon. Technol. Lett.23(15), 1094–1096 (2011). [CrossRef]
  20. Y. Jiao, S. Fan, and D. A. B. Miller, “Designing for beam propagation in periodic and nonperiodic photonic nanostructures: extended Hamiltonian method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(3), 036612 (2004). [CrossRef] [PubMed]
  21. E. Centeno and D. Cassagne, “Graded photonic crystals,” Opt. Lett.30(17), 2278–2280 (2005). [CrossRef] [PubMed]
  22. F. Grillot, L. Viv, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol.24(2), 891–896 (2006). [CrossRef]
  23. E. Cassan, S. Laval, S. Lardenois, and A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” IEEE Sel. Top. Quantum Electron.9(2), 460–464 (2003).
  24. L. Vivien, S. Lardenois, D. Pascal, S. Laval, E. Cassan, J. L. Cercus, A. Koster, J. M. Fédéli, and M. Heitzmann, “Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides,” Appl. Phys. Lett.85(5), 701–703 (2004). [CrossRef]
  25. B. Vasić, G. Isić, R. Gajić, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express18(19), 20321–20333 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited