OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4784–4789

Modulation of the propagation speed of mechanical waves in silicon quantum dots embedded in a silicon-nitride film

C. Torres-Torres, A. López-Suárez, R. Torres-Martínez, A. Rodriguez, J. A. Reyes-Esqueda, L. Castañeda, J. C. Alonso, and A. Oliver  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 4784-4789 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (888 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a vectorial picosecond self-diffraction method, we evaluate the modification of the speed of the sound in a silicon-nitride film containing silicon quantum dots prepared by remote plasma-enhanced chemical vapor deposition. Our non-contact technique is based on the stimulation of the electrostriction contribution to the nonlinearity of index exhibited by the sample in a multiwave mixing laser experiment. We identified the electronic birefringence using two of the incident beams to generate a self-diffraction signal, then, we modified the third order nonlinear response by means of the optical Kerr effect given by a phase-mismatched third beam which induced electrostriction. Our results indicated that the speed of the sound in a silicon-nitride film can be simultaneously tailored by an electronic nonlinear refractive index, and by an electrostriction effect, both resulting from silicon quantum dots doping.

© 2012 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.3270) Nonlinear optics : Kerr effect
(190.4223) Nonlinear optics : Nonlinear wave mixing
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optics

Original Manuscript: December 6, 2011
Revised Manuscript: December 31, 2011
Manuscript Accepted: January 5, 2012
Published: February 10, 2012

C. Torres-Torres, A. López-Suárez, R. Torres-Martínez, A. Rodriguez, J. A. Reyes-Esqueda, L. Castañeda, J. C. Alonso, and A. Oliver, "Modulation of the propagation speed of mechanical waves in silicon quantum dots embedded in a silicon-nitride film," Opt. Express 20, 4784-4789 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. S. Waggoner, C. P. Tan, and H. G. Craighead, “Atomic layer deposited silicon dioxide films on nanomechanical silicon nitride resonators,” J. Appl. Phys.107(11), 114505 (2010). [CrossRef]
  2. A. Cleland, Foundations of Nanomechanics: From Solid-State Theory to Device Applications (Springer, 2003).
  3. Y. R. Shen, “Electrostriction optical Kerr effect and self-focusing of laser beams,” Phys. Lett.20(4), 378–380 (1966). [CrossRef]
  4. M. S. Chang, “Bragg electrostriction in optical waveguides,” Appl. Opt.16(7), 1960–1965 (1977). [CrossRef] [PubMed]
  5. R. W. Boyd, Nonlinear Optics (Academic Press, 1992).
  6. C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys.104(1), 014306 (2008). [CrossRef]
  7. M. Klopfer and R. K. Jain, “Plasmonic quantum dots for nonlinear optical applications,” Opt. Mater. Express1(7), 1353–1366 (2011). [CrossRef]
  8. G. Burlak, “Four-wave acousto-electromagnetic interactions in crystals with a nonlinear electrostriction,” Physica D166(3-4), 197–207 (2002). [CrossRef]
  9. G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: Principles, materials, design, and device structure,” Opt. Eng.50(7), 071112 (2011). [CrossRef]
  10. M. Ito, K. Imakita, M. Fujii, and S. Hayashi, “Nonlinear optical properties of silicon nanoclusters/nanocrystals doped SiO2 films: Annealing temperature dependence,” J. Appl. Phys.108(6), 063512 (2010). [CrossRef]
  11. G.-R. Lin, C.-W. Lian, C.-L. Wu, and Y.-H. Lin, “Gain analysis of optically-pumped Si nanocrystal waveguide amplifiers on silicon substrate,” Opt. Express18(9), 9213–9219 (2010). [CrossRef] [PubMed]
  12. A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett.10(4), 1506–1511 (2010). [CrossRef] [PubMed]
  13. D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol.6(11), 710–713 (2011). [CrossRef] [PubMed]
  14. Y. Zhu, F. Zhang, J. Yang, H. Zheng, and F. Yang, “Stability of mechanical properties for submicrometer single-crystal silicon cantilever under cyclic load,” Microelectromech. Syst.20, 178–183 (2011).
  15. C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun.281(12), 3369–3374 (2008). [CrossRef]
  16. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).
  17. A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortiz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express17(12), 10056–10068 (2009). [CrossRef] [PubMed]
  18. T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, “Microfabrication of cantilever styli for atomic force microscopy,” J. Vac. Sci. Technol. A8(4), 3386–3396 (1990). [CrossRef]
  19. A. Othonos, E. Lioudakis, and A. G. Nassiopoulou, “Surface-related states in oxidized silicon nanocrystals enhance carrier relaxation and inhibit Auger recombination,” Nanoscale Res. Lett.3(9), 315–320 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited