OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4790–4795

Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air

Xiaodong Sun, Shengqi Xu, Jiayu Zhao, Weiwei Liu, Ya Cheng, Zhizhan Xu, See Leang Chin, and Guoguang Mu  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 4790-4795 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (917 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The longitudinal distribution of the laser peak intensity inside a half meter long femtosecond laser filament in air is studied by measuring the signal ratio of two nitrogen fluorescence lines, 391 nm and 337 nm. The experimental results reveal that laser peak intensity initially remains almost constant (~4.3 × 1013 W/cm2) inside the filament. However, before the end of the filament, surprisingly the laser intensity undergoes dramatic increase. A maximum intensity as high as 2.8×1014 W/cm2 could be reached. The experimental result is unexpected by the conventional intensity clamping scenario, according to which the laser peak intensity would feature low variation along a filament. The experimental result is then interpreted as being due to the generation of a short pulse at trailing stage of the filamentation with reduced diameter. This phenomenon might be of great interest owing to its potential application in high-order-harmonic generation and producing isolated single attosecond laser pulse through simple experimental approach.

© 2012 OSA

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(260.5950) Physical optics : Self-focusing
(300.6410) Spectroscopy : Spectroscopy, multiphoton

ToC Category:
Nonlinear Optics

Original Manuscript: January 17, 2012
Revised Manuscript: February 6, 2012
Manuscript Accepted: February 7, 2012
Published: February 10, 2012

Xiaodong Sun, Shengqi Xu, Jiayu Zhao, Weiwei Liu, Ya Cheng, Zhizhan Xu, See Leang Chin, and Guoguang Mu, "Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air," Opt. Express 20, 4790-4795 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys.83(9), 863–905 (2005). [CrossRef]
  2. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007). [CrossRef]
  3. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys.70(10), 1633–1713 (2007). [CrossRef]
  4. J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express16(1), 466–493 (2008). [CrossRef] [PubMed]
  5. S. L. Chin, “Femtosecond laser filamentation,” (Springer, New York, 2010).
  6. P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J. P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010). [CrossRef] [PubMed]
  7. M. Kolesik, D. Mirell, J.-C. Diels, and J. V. Moloney, “On the higher-order Kerr effect in femtosecond filaments,” Opt. Lett.35(21), 3685–3687 (2010). [CrossRef] [PubMed]
  8. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett.20(1), 73–75 (1995). [CrossRef] [PubMed]
  9. J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B71(6), 877–879 (2000). [CrossRef]
  10. H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Berger, and P. Agostini, “High-order harmonic generation and quasiphase matching in xenon using self-guided femtosecond pulses,” Phys. Rev. Lett.81(8), 1611–1613 (1998). [CrossRef]
  11. F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(3), 036406 (2006). [CrossRef] [PubMed]
  12. P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: microscopic imaging and reconstruction,” Phys. Rev. A82(1), 013805 (2010). [CrossRef]
  13. X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express18(25), 26007–26017 (2010). [CrossRef] [PubMed]
  14. B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, and Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A84(6), 063819 (2011). [CrossRef]
  15. Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: multiple filaments and intensity clamping,” Laser Phys.20(4), 886–890 (2010). [CrossRef]
  16. S. Xu, J. Bernhardt, M. Sharifi, W. Liu, and S. L. Chin, “Intensity clamping during laser filamentation by TW level femtosecond laser in air and argon,” Laser Phys.22(1), 195–202 (2012). [CrossRef]
  17. S. Xu, X. Sun, B. Zeng, W. Chu, J. Zhao, W. Liu, Y. Cheng, Z. Xu, and S. L. Chin, “Simple method of measuring laser peak intensity inside femtosecond laser filament in air,” Opt. Express20(1), 299–307 (2012). [CrossRef] [PubMed]
  18. A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys.11, 68–76 (2001).
  19. A. Talebpour, A. D. Bandrauk, J. Yang, and S. L. Chin, “Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:Sapphire laser pulse,” Chem. Phys. Lett.313(5-6), 789–794 (1999). [CrossRef]
  20. H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys.360(1-3), 171–175 (2009). [CrossRef]
  21. S. Xu, Y. Zhang, W. Liu, and S. L. Chin, “Experimental confirmation of high-stability of fluorescence in a femtosecond laser filament in air,” Opt. Commun.282(24), 4800–4804 (2009). [CrossRef]
  22. M. B. Gaarde and A. Couairon, “Intensity spikes in laser filamentation: diagnostics and application,” Phys. Rev. Lett.103(4), 043901 (2009). [CrossRef] [PubMed]
  23. Y. Chen, F. Théberge, O. Kosareva, N. Panov, V. P. Kandidov, and S. L. Chin, “Evolution and termination of a femtosecond laser filament in air,” Opt. Lett.32(24), 3477–3479 (2007). [CrossRef] [PubMed]
  24. H. S. Chakraborty, M. B. Gaarde, and A. Couairon, “Single attosecond pulses from high harmonics driven by self-compressed filaments,” Opt. Lett.31(24), 3662–3664 (2006). [CrossRef] [PubMed]
  25. D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys.13(4), 043022 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited