OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 4819–4829

Polarized backlight with constrained angular divergence for enhancement of light extraction efficiency from wire grid polarizer

Po-Hung Yao, Chi-Jui Chung, Chien-Li Wu, and Cheng-Huan Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 4819-4829 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1497 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Efficiency of liquid crystal displays highly depends on the amount of polarized light emerging from the backlight module. In this paper, a backlight architecture using a nanoimprint wire grid polarizer for polarization recycling is proposed and studied, in which the extraction efficiency of polarized light is the major concern. The backlight module is composed of the stack of a wire grid polarizer, a lenticular array and a light guide plate. The light guide plate features interleaving v-groove and trapezoidal ridge coated with aluminum on the top surface, and scattering dot array on the bottom. The angular divergence of emerging light from the light guide plate can be well constrained so as to exploit the angular range with the best transmission of polarized light for the wire grid polarizer. The prototype of a 2.5-inch module has demonstrated an angular divergence of 48°. The overall extraction efficiency of polarized light enhanced by 21% and uniformity of 76% have been achieved.

© 2012 OSA

OCIS Codes
(120.2040) Instrumentation, measurement, and metrology : Displays
(220.4000) Optical design and fabrication : Microstructure fabrication
(110.2945) Imaging systems : Illumination design

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 11, 2011
Revised Manuscript: January 20, 2012
Manuscript Accepted: January 21, 2012
Published: February 13, 2012

Po-Hung Yao, Chi-Jui Chung, Chien-Li Wu, and Cheng-Huan Chen, "Polarized backlight with constrained angular divergence for enhancement of light extraction efficiency from wire grid polarizer," Opt. Express 20, 4819-4829 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G.-J. Park, Y.-G. Kim, J.-H. Yi, J.-H. Kwon, J.-H. Park, S.-H. Kim, B.-K. Kim, J.-K. Shin, and H.-S. Soh, “Enhancement of the optical performance by optimization of optical sheets in direct-illumination LCD backlight,” J. Opt. Soc. Korea 13(1), 152–157 (2009). [CrossRef]
  2. Z. B. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93(12), 121104 (2008). [CrossRef]
  3. T. Sergan, M. Lavrentovich, J. Kelly, E. Gardner, and D. Hansen, “Measurement and modeling of optical performance of wire grids and liquid-crystal displays utilizing grid polarizers,” J. Opt. Soc. Am. A 19(9), 1872–1885 (2002). [CrossRef] [PubMed]
  4. J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006). [CrossRef]
  5. P. C. Chen and H. L. Kuo, “Color shift improvement in a broadband cholesteric liquid crystal polarizer through computational simulations,” Proc. SPIE 7050, 705015, 705015-8 (2008). [CrossRef]
  6. L. Li, J. F. Li, B. S. Fan, Y. Q. Jiang, and S. M. Faris, “Reflective cholesteric liquid crystal polarizers and their applications,” Proc. SPIE 3560, 33–40 (1998). [CrossRef]
  7. Y. Iwamoto and Y. Iimura, “Transmitted light enhancement of electric-field-controlled multidomain vertically aligned liquid crystal displays using circular polarizers and a cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 42, L51–L53 (2003). [CrossRef]
  8. X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93(8), 4407–4412 (2003). [CrossRef]
  9. M. Xu, H. P. Urbach, D. de Boer, and H. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13(7), 2303–2320 (2005). [CrossRef] [PubMed]
  10. S. H. Baik, S. K. Hwang, Y. G. Kim, G. Park, J. H. Kwon, W.-T. Moon, S.-H. Kim, B.-K. Kim, and S.-H. Kang, “Simulation and fabrication of the cone sheet for LCD backlight application,” J. Opt. Soc. Korea 13(4), 478–483 (2009). [CrossRef]
  11. C. F. Lin, Y. B. Fang, and P. H. Yang, “Optimized micro-prism diffusion film for slim-type bottom-lit backlight units,” J. Disp. Technol. 7(1), 3–9 (2011). [CrossRef]
  12. J. W. Lee, S. C. Meissner, and R. J. Sudol, “Optical film to enhance cosmetic appearance and brightness in liquid crystal displays,” Opt. Express 15(14), 8609–8618 (2007). [CrossRef] [PubMed]
  13. J. H. Lee, H. S. Lee, B. K. Lee, W. S. Choi, H. Y. Choi, and J. B. Yoon, “Simple liquid crystal display backlight unit comprising only a single-sheet micropatterned polydimethylsiloxane (PDMS) light-guide plate,” Opt. Lett. 32(18), 2665–2667 (2007). [CrossRef] [PubMed]
  14. S. Aoyama, A. Funamoto, and K. Imanaka, “Hybrid normal-reverse prism coupler for light-emitting diode backlight systems,” Appl. Opt. 45(28), 7273–7278 (2006). [CrossRef] [PubMed]
  15. K. Käläntär, “A directional backlight with narrow angular luminance distribution for widening viewing angle of a LCD with a front-surface-light-scattering film,” SID 11 Digest. 42(1), 890–893 (2011).
  16. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970).
  17. V. C. Ballenegger and T. A. Weber, “The Ewald–Oseen extinction theorem and extinction lengths,” Am. J. Phys. 67(7), 599–605 (1999). [CrossRef]
  18. K. Takano, H. Yokoyama, A. Ichii, I. Morimoto, and M. Hangyo, “Wire-grid polarizer sheet in the terahertz region fabricated by nanoimprint technology,” Opt. Lett. 36(14), 2665–2667 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited