OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 4830–4839

An automatic method for assembling a large synthetic aperture digital hologram

A. Pelagotti, M. Paturzo, M. Locatelli, A. Geltrude, R. Meucci, A. Finizio, and P. Ferraro  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 4830-4839 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1886 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A major issue so far for digital holography is the low spatial resolution generally achieved. The numerical aperture is limited by the area of currently available detectors, such as CCD sensors, which is significantly lower than that of a holographic plate. This is an even more severe constraint when IR sensors such as microbolometers are taken into account. In order to increase the numerical aperture of such systems, we developed an automatic technique which is capable of recording several holograms and of stitching them together, obtaining a digital hologram with a synthetic but larger numerical aperture. In this way we show that more detail can be resolved and a wider parallax angle can be achieved. The method is demonstrated for visible as well IR digital holography, recording and displaying large size objects.

© 2012 OSA

OCIS Codes
(090.2870) Holography : Holographic display
(100.0100) Image processing : Image processing
(100.6640) Image processing : Superresolution
(110.3080) Imaging systems : Infrared imaging
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: November 15, 2011
Revised Manuscript: December 6, 2011
Manuscript Accepted: December 7, 2011
Published: February 13, 2012

A. Pelagotti, M. Paturzo, M. Locatelli, A. Geltrude, R. Meucci, A. Finizio, and P. Ferraro, "An automatic method for assembling a large synthetic aperture digital hologram," Opt. Express 20, 4830-4839 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and M. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215(4-6), 257–262 (2003). [CrossRef]
  2. A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18(13), 14159–14164 (2010). [CrossRef] [PubMed]
  3. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17(4), 2487–2499 (2009). [CrossRef] [PubMed]
  4. M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010). [CrossRef] [PubMed]
  5. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006). [CrossRef] [PubMed]
  6. Y. Kuznetsova, A. Neumann, and S. R. Brueck, “Imaging interferometric microscopy-approaching the linear systems limits of optical resolution,” Opt. Express 15(11), 6651–6663 (2007). [CrossRef] [PubMed]
  7. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45(5), 822–828 (2006). [CrossRef] [PubMed]
  8. L. Martínez-León and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express 16(1), 161–169 (2008). [CrossRef] [PubMed]
  9. F. Le Clerc, M. Gross, and L. Collot, “Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett. 26(20), 1550–1552 (2001). [CrossRef] [PubMed]
  10. R. Binet, J. Colineau, and J.-C. Lehureau, “Short-range synthetic aperture imaging at 633 nm by digital holography,” Appl. Opt. 41(23), 4775–4782 (2002). [CrossRef] [PubMed]
  11. B. M. Hennelly, T. J. Naughton, and J. McDonald, “Digital holographic superresolution by rotating the object wavefield,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DTuD5.
  12. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002). [CrossRef]
  13. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16(21), 17107–17118 (2008). [CrossRef] [PubMed]
  14. M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34(23), 3650–3652 (2009). [CrossRef] [PubMed]
  15. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27(24), 2179–2181 (2002). [CrossRef] [PubMed]
  16. F. Gyímesi, Z. Füzessy, V. Borbély, B. Ráczkevi, G. Molnár, A. Czitrovszky, A. Tibor Nagy, G. Molnárka, A. Lotfi, A. Nagy, I. Harmati, and D. Szigethy, “Half-magnitude extensions of resolution and field of view in digital holography by scanning and magnification,” Appl. Opt. 48(31), 6026–6034 (2009). [CrossRef] [PubMed]
  17. V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A, Pure Appl. Opt. 11(12), 125408 (2009). [CrossRef]
  18. A. Gruen, “Adaptive least square correlation: a powerful image matching technique,” S. Afr. J. Photogrammet. 14, 175–187 (1985).
  19. D. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004). [CrossRef]
  20. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008). [CrossRef]
  21. M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-12-2112 . [CrossRef] [PubMed]
  22. J. M. Fitzpatrick and D. L. G. Hill, and C. R. Maurer, Jr., “Image registration,” in Handbook of Medical Imaging—Volume 2, Medical Image Processing And Analysis, M. Sonka and J. M. Fitzpatrick, eds. (SPIE Press, 2000), Chap. 8.
  23. B. Zitovà and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput. 21(11), 977–1000 (2003). [CrossRef]
  24. F. Maes, D. Vandermeulen, and P. Suetens, “Medical image registration using mutual information,” Proc IEEE 91(10), 1699–1722 (2003). [CrossRef]
  25. F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16(2), 187–198 (1997). [CrossRef] [PubMed]
  26. A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal, “Automated multimodality medical image registration using information theory,” in Proceedings XIVth International Conference on Information Processing in Medical Imaging—IPMI'95, Computational Imaging and Vision (Kluwer Academic, 1995), Vol. 3, pp. 263–274.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (504 KB)     
» Media 2: AVI (3909 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited