OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 4856–4870

Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation

Sinjeung Park, Jae W. Hahn, and Jae Yong Lee  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 4856-4870 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2616 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The recent discovery of strong nonlinear emission in metallic nanostructures has offered possibilities for realization of functional nano photonic devices. Here, we demonstrate a novel design of a plasmonic nano device for high conversion efficiency of second harmonic generation. A 4 × 4 bowtie aperture array is fabricated to have both plasmonic resonance for local field enhancement of the fundamental wave and Fabry-Pérot resonance for high transmission of second harmonic wave. Combining nano structures for exciting surface plasmon polariton and suppressing higher order diffraction and anti-reflection layer, we achieve a second harmonic conversion efficiency of 1.4×10−8 that is nearly an order of magnitude larger than the results published in recent literatures. We also theoretically analyze evidences of the role of double resonances tuned to the fundamental wave and the second harmonic wave, resulting in the augmentation of second harmonic response approximately an order of magnitude greater than that without the help of the resonance.

© 2012 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Nonlinear Optics

Original Manuscript: December 1, 2011
Revised Manuscript: February 4, 2012
Manuscript Accepted: February 9, 2012
Published: February 13, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Sinjeung Park, Jae W. Hahn, and Jae Yong Lee, "Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation," Opt. Express 20, 4856-4870 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010). [CrossRef] [PubMed]
  2. N. Kroo, G. Farkas, P. Dombi, and S. Varró, “Nonlinear processes induced by the enhanced, evanescent field of surface plasmons excited by femtosecond laser pulses,” Opt. Express 16(26), 21656–21661 (2008). [CrossRef] [PubMed]
  3. S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101(5), 056802 (2008). [CrossRef] [PubMed]
  4. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003). [CrossRef] [PubMed]
  5. M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5(4), 799–802 (2005). [CrossRef] [PubMed]
  6. T. Xu, X. Jiao, G. P. Zhang, and S. Blair, “Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement,” Opt. Express 15(21), 13894–13906 (2007). [CrossRef] [PubMed]
  7. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006). [CrossRef] [PubMed]
  8. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007). [CrossRef] [PubMed]
  9. R. Zhou, H. Lu, X. Liu, Y. Gong, and D. Mao, “Second-harmonic generation from a periodic array of noncentrosymmetric nanoholes,” J. Opt. Soc. Am. B 27(11), 2405–2409 (2010). [CrossRef]
  10. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, Amsterdam and Boston, 2008).
  11. P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10(12), 4880–4883 (2010). [CrossRef] [PubMed]
  12. K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011). [CrossRef] [PubMed]
  13. T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007). [CrossRef] [PubMed]
  14. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009). [CrossRef] [PubMed]
  15. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  16. X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano apertures for near field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002). [CrossRef]
  17. E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004). [CrossRef]
  18. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008). [CrossRef] [PubMed]
  19. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006). [CrossRef] [PubMed]
  20. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003). [CrossRef] [PubMed]
  21. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011). [CrossRef] [PubMed]
  22. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008). [CrossRef]
  23. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008). [CrossRef] [PubMed]
  24. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  25. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011). [CrossRef] [PubMed]
  26. A. A. Zharov and N. A. Zharova, “Double-resonance plasmon-driven enhancement of nonlinear optical response in a metamaterial with coated nanoparticles,” JETP Lett. 92(4), 210–213 (2010). [CrossRef]
  27. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin and Heidelberg, 1988).
  28. E. K. L. Wong and G. L. Richmond, “Examination of the surface second harmonic response from noble metal surfaces at infrared wavelengths,” J. Chem. Phys. 99(7), 5500–5507 (1993). [CrossRef]
  29. P. Schön, N. Bonod, E. Devaux, J. Wenger, H. Rigneault, T. W. Ebbesen, and S. Brasselet, “Enhanced second-harmonic generation from individual metallic nanoapertures,” Opt. Lett. 35(23), 4063–4065 (2010). [CrossRef] [PubMed]
  30. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  31. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt. 21(6), 1069–1072 (1982). [CrossRef] [PubMed]
  32. Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79(23), 235109 (2009). [CrossRef]
  33. J. R. Heflin, C. Figura, D. Marciu, Y. Liu, and R. O. Claus, “Thickness dependence of second-harmonic generation in thin films fabricated from ionically self-assembled monolayers,” Appl. Phys. Lett. 74(4), 495–497 (1999). [CrossRef]
  34. M. W. Klein, M. Wegener, N.-A. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials: erratum,” Opt. Express 16(11), 8055 (2008). [CrossRef]
  35. N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33(17), 1975–1977 (2008). [CrossRef] [PubMed]
  36. H. Lu, X. Liu, R. Zhou, Y. Gong, and D. Mao, “Second-harmonic generation from metal-film nanohole arrays,” Appl. Opt. 49(12), 2347–2351 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited