OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 4968–4978

Low-cost ultra-thin broadband terahertz beam-splitter

Benjamin S.-Y. Ung, Christophe Fumeaux, Hungyen Lin, Bernd M. Fischer, Brian W.-H. Ng, and Derek Abbott  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 4968-4978 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1087 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A low-cost terahertz beam-splitter is fabricated using ultra-thin LDPE plastic sheeting coated with a conducting silver layer. The beam splitting ratio is determined as a function of the thickness of the silver layer—thus any required splitting ratio can be printed on demand with a suitable rapid prototyping technology. The low-cost aspect is a consequence of the fact that ultra-thin LDPE sheeting is readily obtainable, known more commonly as domestic plastic wrap or cling wrap. The proposed beam-splitter has numerous advantages over float zone silicon wafers commonly used within the terahertz frequency range. These advantages include low-cost, ease of handling, ultra-thin thickness, and any required beam splitting ratio can be readily fabricated. Furthermore, as the beam-splitter is ultra-thin, it presents low loss and does not suffer from Fabry-Pérot effects. Measurements performed on manufactured prototypes with different splitting ratios demonstrate a good agreement with our theoretical model in both P and S polarizations, exhibiting nearly frequency-independent splitting ratios in the terahertz frequency range.

© 2012 OSA

OCIS Codes
(230.1360) Optical devices : Beam splitters
(040.2235) Detectors : Far infrared or terahertz
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Optical Devices

Original Manuscript: January 6, 2012
Revised Manuscript: February 3, 2012
Manuscript Accepted: February 3, 2012
Published: February 13, 2012

Benjamin S.-Y. Ung, Christophe Fumeaux, Hungyen Lin, Bernd M. Fischer, Brian W.-H. Ng, and Derek Abbott, "Low-cost ultra-thin broadband terahertz beam-splitter," Opt. Express 20, 4968-4978 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Bakunov, R. Mikhaylovskiy, M. Tani, and C. Que, “A structure for enhanced terahertz emission from a photoexcited semiconductor surface,” Appl. Phys. B-Lasers Opt.100, 695–698 (2010). [CrossRef]
  2. B. Clough, J. Liu, and X.-C. Zhang, ““All air-plasma” terahertz spectroscopy,” Opt. Lett.36(13), 2399–2401 (2011). [CrossRef] [PubMed]
  3. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett.25(16), 1210–1212 (2000). [CrossRef]
  4. J. Dai, X. Xie, and X.-C. Zhang, “Terahertz wave amplification in gases with the excitation of femtosecond laser pulses,” Appl. Phys. Lett.91(21), 211102 (2007). [CrossRef]
  5. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express18(12), 12311–12327 (2010). [CrossRef] [PubMed]
  6. M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D-Appl. Phys.44(8), 083001 (2011). [CrossRef]
  7. P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—Modern techniques and applications,” Laser Photon. Rev.5(1), 124–166 (2011). [CrossRef]
  8. K. Kawase, S. Ichino, K. Suizu, and T. Shibuya, “Half cycle terahertz pulse generation by prism-coupled Cherenkov phase-matching method,” J. Infrared Millim. Terahertz Waves32, 1168–1177 (2011). [CrossRef]
  9. A. K. Malik, H. K. Malik, and S. Kawata, “Investigations on terahertz radiation generated by two superposed femtosecond laser pulses,” J. Appl. Phys.107(11), 113105 (2010). [CrossRef]
  10. K. Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys.70 (10), 1597 (2007). [CrossRef]
  11. A. M. Weiner, A. M. Kan’an, and D. E. Leaird, “High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal,” Opt. Lett.23(18), 1441–1443 (1998). [CrossRef]
  12. X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett.90(14), 141104 (2007). [CrossRef]
  13. N. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett.88(26), 261103–3 (2006). [CrossRef]
  14. C. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves32(12), 1–4 (2011). [CrossRef]
  15. C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. LaVeigne, and D. B. Tanner, “Silicon beam splitter for far-infrared and terahertz spectroscopy,” Appl. Opt.46, 7884–7888 (2007). [CrossRef] [PubMed]
  16. J.-S. Li, D.-G. Xu, and J.-Q. Yao, “Compact terahertz wave polarizing beam splitter,” Appl. Opt.49(24), 4494–4497 (2010). [CrossRef] [PubMed]
  17. Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express16(20), 15991–15998 (2008). [CrossRef] [PubMed]
  18. B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express19(5), 4528–4535 (2011). [CrossRef] [PubMed]
  19. B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt.50(15), 2256–2262 (2011). [CrossRef] [PubMed]
  20. A. Siemion, A. Siemion, M. Makowski, M. Sypek, E. Hrault, F. Garet, and J.-L. Coutaz, “Off-axis metallic diffractive lens for terahertz beams,” Opt. Lett.36(11), 1960–1962 (2011). [CrossRef] [PubMed]
  21. B. Voisiat, A. Bičiu̅nas, I. Kašalynas, and G. Račiukaitis, “Band-pass filters for THz spectral range fabricated by laser ablation,” Appl. Phys. A-Matt. Sci. Process.104(3), 953–958 (2011). [CrossRef]
  22. S. Atakaramians, S. Asfar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett.98(12), 121104 (2011). [CrossRef]
  23. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009). [CrossRef] [PubMed]
  24. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009). [CrossRef] [PubMed]
  25. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express19(25), 24884–24889 (2011). [CrossRef]
  26. C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys.107, 5319 (1997). [CrossRef]
  27. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  28. N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett.93(5), 051105 (2008). [CrossRef]
  29. D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett.89, 122103 (2006). [CrossRef]
  30. F. A. Hegmann, O. Ostroverkhova, and D. G. Cooke, Probing Organic Semiconductors with Terahertz Pulses Photophysics of Molecular Materials (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).
  31. M. Tinkham, “Energy gap interpretation of experiments on infrared transmission through superconducting films,” Phys. Rev.104, 845–846 (1956). [CrossRef]
  32. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76, 125408 (2007). [CrossRef]
  33. S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys.60, 257–261 (1992). [CrossRef]
  34. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).
  35. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth’s Scientific Publications, 1955).
  36. M. Heald and J. Marion, Classical Electromagnetic Radiation (Brooks Cole, 1994).
  37. M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor,” Appl. Phys. Lett.97(7), 071106 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited