OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5082–5091

Highly efficient Raman distributed feedback fibre lasers

Jindan Shi, Shaif-ul Alam, and Morten Ibsen  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5082-5091 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate highly efficient Raman distributed feedback (DFB) fibre lasers for the first time with up to 1.6W of continuous wave (CW) output power. The DFB Bragg gratings are written directly into two types of commercially available passive germano-silica fibres. Two lasers of 30cm length are pumped with up to 15W of CW power at 1068nm. The threshold power is ~2W for a Raman-DFB (R-DFB) laser written in standard low-NA fibre, and only ~1W for a laser written in a high-NA fibre, both of which oscillate in a narrow linewidth of <0.01nm at ~1117nm and ~1109nm, respectively. The slope efficiencies are ~74% and ~93% with respect to absorbed pump power in the low-NA fibre and high-NA fibre respectively. Such high conversion efficiency suggests that very little energy is lost in the form of heat through inefficient energy transfer. Our results are supported by numerical simulations, and furthermore open up for the possibility of having narrow linewidth all-fibre laser sources in wavelength bands not traditionally covered by rare-earth doped silica fibres. Simulations also imply that this technology has the potential to produce even shorter R-DFB laser devices at the centimetre-level and with mW-level thresholds, if Bragg gratings formed in fibre materials with higher intrinsic Raman gain coefficient than silica are used. These materials include for example tellurite or chalcogenide glasses. Using glasses like these would also open up the possibility of having narrow linewidth fibre sources with DFB laser oscillating much further into the IR than what currently is possible with rare-earth doped silica glasses.

© 2012 OSA

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3550) Lasers and laser optics : Lasers, Raman
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 21, 2011
Manuscript Accepted: February 2, 2012
Published: February 15, 2012

Jindan Shi, Shaif-ul Alam, and Morten Ibsen, "Highly efficient Raman distributed feedback fibre lasers," Opt. Express 20, 5082-5091 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. Kringlebotn, J.-L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett.19(24), 2101–2103 (1994). [CrossRef] [PubMed]
  2. A. Asseh, H. Storøy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett.31(12), 969–970 (1995). [CrossRef]
  3. M. Ibsen, E. Rønnekleiv, G. J. Cowle, M. O. Berendt, O. Hadeler, M. N. Zervas, and R. I. Laming, “Robust high power (>20 mW) all-fibre DFB lasers with unidirectional and truly single polarisation outputs,” in Proceedings of CLEO '99, paper CWE4 (1999).
  4. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Low-threshold cw Raman laser,” Appl. Phys. Lett.29(3), 181–183 (1976). [CrossRef]
  5. P. Persephonis, S. V. Chernikov, and J. R. Taylor, “Cascaded CW fibre Raman laser source 1.6-1.9 μm,” Electron. Lett.32(16), 1486–1487 (1996). [CrossRef]
  6. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express17(26), 23678–23683 (2009). [CrossRef] [PubMed]
  7. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010). [CrossRef]
  8. R. Engelbrecht, A. Siekiera, R. Bauer, R. Neumann, and B. Schmauss, “Characterization of Short PM Raman Fiber Lasers with a Small Spectral Bandwidth,” in Proceedings to OFC/NFOEC’11, paper OMQ2 (2011).
  9. V. E. Perlin and H. G. Winful, “Distributed feedback fiber Raman laser,” IEEE J. Quantum Electron.37(1), 38–47 (2001). [CrossRef]
  10. H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972). [CrossRef]
  11. Y. Hu and N. G. R. Broderick, “Improved design of a DFB Raman fibre laser,” Opt. Commun.282(16), 3356–3359 (2009). [CrossRef]
  12. J. Shi and M. Ibsen, “Effects of Phase and Amplitude Noise on π Phase-Shifted DFB Raman Fibre Lasers,” in Proceedings of BGPP’10, paper JThA30 (2010).
  13. P. S. Westbrook, K. S. Abedin, J. W. Nicholson, T. Kremp, and J. Porque, “Demonstration of a Raman fiber distributed feedback laser,” in Proceedings of CLEO’11, PDPA11 (2011).
  14. P. S. Westbrook, K. S. Abedin, J. W. Nicholson, T. Kremp, and J. Porque, “Raman fiber distributed feedback lasers,” Opt. Lett.36(15), 2895–2897 (2011). [CrossRef] [PubMed]
  15. J. Shi, S.-u. Alam, and M. Ibsen, “High power, low threshold, Raman DFB fiber lasers,” in Proceedings of IQEC/CLEO Pacific Rim Sydney, postdeadline paper (2011).
  16. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett.10(6), 842–844 (1998). [CrossRef]
  17. C. Fukai, K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, and I. Sankawa, “Effective Raman gain characteristics in germanium- and fluorine-doped optical fibers,” Opt. Lett.29(6), 545–547 (2004). [CrossRef] [PubMed]
  18. R. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron.15(10), 1157–1160 (1979). [CrossRef]
  19. R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt. Lett.28(13), 1126–1128 (2003). [CrossRef] [PubMed]
  20. J. Shi, X. Feng, P. Horak, K. K. Chen, P. S. Teh, S.-U. Alam, W. H. Loh, D. J. R. Richardson, and M. Ibsen, “1.06 µm picosecond pulsed, normal dispersion pumping for generating efficient broadband infrared supercontinuum in meter-length single-mode tellurite holey fiber with high Raman gain coefficient,” J. Lightwave Technol.29(22), 3461–3469 (2011). [CrossRef]
  21. R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express17(9), 7540–7548 (2009). [CrossRef] [PubMed]
  22. A. Mori, H. Masuda, K. Shikano, and M. Shimizu, “Ultra-wide-band Tellurite-based fiber Raman amplifier,” J. Lightwave Technol.21(5), 1300–1306 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited