OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5099–5107

Electro-optical resonance modulation of vertical-cavity surface-emitting lasers

Tim David Germann, Werner Hofmann, Alexey M. Nadtochiy, Jan-Hindrik Schulze, Alex Mutig, André Strittmatter, and Dieter Bimberg  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5099-5107 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1100 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical and electrical investigations of vertical-cavity surface-emitting lasers (VCSEL) with a monolithically integrated electro-optical modulator (EOM) allow for a detailed physical understanding of this complex compound cavity laser system. The EOM VCSEL light output is investigated to identify optimal working points. An electro-optic resonance feature triggered by the quantum confined Stark effect is used to modulate individual VCSEL modes by more than 20 dB with an extremely small EOM voltage change of less than 100 mV. Spectral mode analysis reveals modulation of higher order modes and very low wavelength chirp of < 0.5 nm. Dynamic experiments and simulation predict an intrinsic bandwidth of the EOM VCSEL exceeding 50 GHz.

© 2012 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(260.6580) Physical optics : Stark effect
(250.4110) Optoelectronics : Modulators
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 20, 2011
Manuscript Accepted: January 2, 2012
Published: February 16, 2012

Tim David Germann, Werner Hofmann, Alexey M. Nadtochiy, Jan-Hindrik Schulze, Alex Mutig, André Strittmatter, and Dieter Bimberg, "Electro-optical resonance modulation of vertical-cavity surface-emitting lasers," Opt. Express 20, 5099-5107 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Huff, “State of the short – reach optics market,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMV5.
  2. W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” post-deadline paper at OFC/NFOEC 2011, Los Angeles, CA, USA, PDPC5, (2011).
  3. P. Moser, W. Hofmann, P. Wolf, J. Lott, G. Larisch, A. Payusov, N. Ledentsov, and D. Bimberg, “81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett.98(23), 231106 (2011). [CrossRef]
  4. P. Westbergh, J. Gustavsson, A. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron.15(3), 694–703 (2009). [CrossRef]
  5. V. Shchukin, N. Ledentsov, J. Lott, H. Quast, F. Hopfer, L. Karachinsky, M. Kuntz, P. Moser, A. Mutig, A. Strittmatter, V. Kalosha, and D. Bimberg, “Ultra high-speed electro-optically modulated VCSELs: modeling and experimental results,” Proc. SPIE6889, 68890H, 68890H–15 (2008). [CrossRef]
  6. N. N. Ledentsov, J. A. Lott, V. A. Shchukin, D. Bimberg, A. Mutig, T. D. Germann, J. R. Kropp, L. Y. Karachinsky, S. A. Blokhin, and A. M. Nadtochiy, “Optical components for very short reach applications at 40 Gb/s and beyond,” (invited) Proc. SPIE7597, 75971F, 75971F–10 (2010). [CrossRef]
  7. T. Germann, A. Strittmatter, A. Mutig, A. Nadtochiy, J. Lott, S. Blokhin, L. Karachinsky, V. Shchukin, N. Ledentsov, U. Pohl, and D. Bimberg, “Monolithic electro-optically modulated vertical cavity surface emitting laser with 10 Gb/s open-eye operation,” Phys. Status Solidi C7(10), 2552–2554 (2010). [CrossRef]
  8. A. Paraskevopoulos, H. J. Hensel, W. D. Molzow, H. Klein, N. Grote, N. N. Ledentsov, V. A. Shchukin, C. Moller, A. R. Kovsh, D. A. Livshits, I. L. Krestnikov, S. S. Mikhrin, P. Matthijsse, and G. Kuyt, “Ultra-high-bandwidth (>35 GHz) electrooptically-modulated VCSEL,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP22.
  9. J. van Eisden, M. Yakimov, V. Tokranov, M. Varanasi, O. Rumyantsev, E. M. Mohammed, I. A. Young, and S. R. Oktyabrsky, “High frequency resonance-free loss modulation in a duo-cavity VCSEL,” Proc. SPIE6908, 69080M, 69080M–11 (2008). [CrossRef]
  10. Y. Lee, J. Jewell, S. Walker, C. Tu, J. Harbison, and L. Florez, “Electrodispersive multiple quantum well modulator,” Appl. Phys. Lett.53(18), 1684 (1988). [CrossRef]
  11. V. Haisler, F. Hopfer, R. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N. Ledentsov, D. Bimberg, C. Möller, and N. Grote, “Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors,” Appl. Phys. Lett.81(14), 2544 (2002). [CrossRef]
  12. D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter32(2), 1043–1060 (1985). [CrossRef] [PubMed]
  13. F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007). [CrossRef]
  14. S. Blokhin, J. Lott, A. Mutig, G. Fiol, N. Ledentsov, M. Maximov, A. Nadtochiy, V. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501 (2009). [CrossRef]
  15. E. A. Avrutin, V. B. Gorfinkel, S. Luryi, and K. A. Shore, “Control of surface-emitting laser diodes by modulating the distributed Bragg mirror reflectivity: small-signal analysis,” Appl. Phys. Lett.63(18), 2460 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited