OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5133–5142

Quantitative Cherenkov emission spectroscopy for tissue oxygenation assessment

Johan Axelsson, Adam K. Glaser, David J. Gladstone, and Brian W. Pogue  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5133-5142 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2888 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurements of Cherenkov emission in tissue during radiation therapy are shown to enable estimation of hemoglobin oxygen saturation non-invasively, through spectral fitting of the spontaneous emissions from the treated tissue. Tissue oxygenation plays a critical role in the efficacy of radiation therapy to kill tumor tissue. Yet in-vivo measurement of this has remained elusive in routine use because of the complexity of oxygen measurement techniques. There is a spectrally broad emission of Cherenkov light that is induced during the time of irradiation, and as this travels through tissue from the point of the radiation deposition, the tissue absorption and scatter impart spectral changes. These changes can be quantified by diffuse spectral fitting of the signal. Thus Cherenkov emission spectroscopy is demonstrated for the first time quantitatively in vitro and qualitatively in vivo, and has potential for real-time online tracking of tissue oxygen during radiation therapy when fully characterized and developed.

© 2012 OSA

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 21, 2011
Revised Manuscript: January 9, 2012
Manuscript Accepted: January 10, 2012
Published: February 16, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Johan Axelsson, Adam K. Glaser, David J. Gladstone, and Brian W. Pogue, "Quantitative Cherenkov emission spectroscopy for tissue oxygenation assessment," Opt. Express 20, 5133-5142 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Axelsson, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Cerenkov emission induced by external beam radiation stimulates molecular fluorescence,” Med. Phys.38(7), 4127–4132 (2011). [CrossRef] [PubMed]
  2. M. A. Lewis, V. D. Kodibagkar, O. K. Oz, and R. P. Mason, “On the potential for molecular imaging with Cerenkov luminescence,” Opt. Lett.35(23), 3889–3891 (2010). [CrossRef] [PubMed]
  3. H. Liu, G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng, “Molecular optical imaging with radioactive probes,” PLoS ONE5(3), e9470 (2010). [CrossRef] [PubMed]
  4. R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol.54(16), N355–N365 (2009). [CrossRef] [PubMed]
  5. A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol.55(2), 483–495 (2010). [CrossRef] [PubMed]
  6. J. V. Jelley, Cerenkov radiation and its applications (Pergamon Press, 1958).
  7. L. H. Gray, A. D. Conger, M. Ebert, S. Hornsey, and O. C. Scott, “The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy,” Br. J. Radiol.26(312), 638–648 (1953). [CrossRef] [PubMed]
  8. P. Vaupel, A. Mayer, and M. Höckel, “Relationship between hemoglobin levels and tumor oxygenation,” in Recombinant Human Erythropoietin (rhEPO) in Clinical Oncology, M. R. Nowrousian, ed. (Springer, 2008), pp. 265–282.
  9. S. M. Evans and C. J. Koch, “Prognostic significance of tumor oxygenation in humans,” Cancer Lett.195(1), 1–16 (2003). [CrossRef] [PubMed]
  10. M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terris, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol.77(1), 18–24 (2005). [CrossRef] [PubMed]
  11. R. A. Cooper, C. M. L. West, J. P. Logue, S. E. Davidson, A. Miller, S. Roberts, I. J. Statford, D. J. Honess, and R. D. Hunter, “Changes in oxygenation during radiotherapy in carcinoma of the cervix,” International Journal of Radiation. Oncology*. Biology*, Physics45, 119–126 (1999).
  12. K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009). [CrossRef] [PubMed]
  13. S. H. Law, N. Suchowerska, D. R. McKenzie, S. C. Fleming, and T. Lin, “Transmission of Cerenkoverenkov radiation in optical fibers,” Opt. Lett.32(10), 1205–1207 (2007). [CrossRef] [PubMed]
  14. P. Cherenkov, “Visible Emission of Clean Liquids by Action of $\gamma$ Radiation,” Dokl. Akad. Nauk SSSR2, 451–454 (1934).
  15. H. H. Ross, “Measurement of b-emitting nuclides using Cherenkov radiation,” Anal. Chem.41(10), 1260–1265 (1969). [CrossRef]
  16. I. E. Tamm and I. M. Frank, “Coherent radiation from a fast electron in a medium,” Dokl. Akad. Nauk SSSR14, 107–112 (1937).
  17. E. Podgorsak, Radiation Oncology Physics: A Handbook for Teachers and Students, (IAEA, 2005), http://www. iaea.org/books (2005).
  18. NIST, “ESTAR: Stopping power and range tables for electrons,” URL http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html (2011).
  19. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  20. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005). [CrossRef] [PubMed]
  21. S. A. Prahl, “Optical absorption of hemoglobin,” URL http://omlc.ogi.edu/spectra/hemoglobin/index.html (2009).
  22. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-um wavelength region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  23. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009). [CrossRef] [PubMed]
  24. S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt.44(10), 1858–1869 (2005). [CrossRef] [PubMed]
  25. C. Baudelet and B. Gallez, “Effect of anesthesia on the signal intensity in tumors using BOLD-MRI: comparison with flow measurements by Laser Doppler flowmetry and oxygen measurements by luminescence-based probes,” Magn. Reson. Imaging22(7), 905–912 (2004). [CrossRef] [PubMed]
  26. J. W. Severinghaus, “Simple, accurate equations for human blood O2 dissociation computations,” J. Appl. Physiol.46(3), 599–602 (1979). [PubMed]
  27. K. S. Chao, W. R. Bosch, S. Mutic, J. S. Lewis, F. Dehdashti, M. A. Mintun, J. F. Dempsey, C. A. Perez, J. A. Purdy, and M. J. Welch, “A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys.49(4), 1171–1182 (2001). [CrossRef] [PubMed]
  28. K. Newbold, M. Partridge, G. Cook, S. A. Sohaib, E. Charles-Edwards, P. Rhys-Evans, K. Harrington, and C. Nutting, “Advanced imaging applied to radiotherapy planning in head and neck cancer: a clinical review,” Br. J. Radiol.79(943), 554–561 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited