OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5168–5177

Dispersion relation and radiation properties of plasmonic crystals with triangular lattices

Takayuki Okamoto and Satoshi Kawata  »View Author Affiliations


Optics Express, Vol. 20, Issue 5, pp. 5168-5177 (2012)
http://dx.doi.org/10.1364/OE.20.005168


View Full Text Article

Enhanced HTML    Acrobat PDF (1272 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical properties of plasmonic crystals consisting of triangular lattices are theoretically investigated using rigorous coupled-wave analysis. Two types of structures were analyzed, one composed of an array of short cylindrical pillars on a flat metal surface and the other composed of an array of shallow cylindrical holes formed in a flat metal surface. The dispersion relations and radiation properties of the second and the third bands around the Γ point in the first Brillouin zone were investigated. We found these properties to be highly dependent on the radii of the cylindrical pillars and holes relative to the lattice constant. We also examined the influence on the dispersion relations and radiation properties of the deviation of the cross-section of the pillars and holes from a perfect circle.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.5298) Diffraction and gratings : Photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 23, 2011
Revised Manuscript: December 27, 2011
Manuscript Accepted: January 25, 2012
Published: February 16, 2012

Citation
Takayuki Okamoto and Satoshi Kawata, "Dispersion relation and radiation properties of plasmonic crystals with triangular lattices," Opt. Express 20, 5168-5177 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5168


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003). [CrossRef] [PubMed]
  2. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett.772670–2673 (1996). [CrossRef] [PubMed]
  3. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguideing in surface plasmon polariton band gap structures,” Phys. Rev. Lett.86, 3008–3011 (2001). [CrossRef] [PubMed]
  4. P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron.8378–386 (2002). [CrossRef]
  5. T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic bandgap laser,” Appl. Phys. Lett.85, 3968–3970 (2004). [CrossRef]
  6. D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett.81, 4315–4317 (2002). [CrossRef]
  7. J. Feng, T. Okamoto, and S. Kawata, “Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling,” Opt. Lett.30, 2302–2304 (2005). [CrossRef] [PubMed]
  8. J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett.87, 241109 (2005). [CrossRef]
  9. M. G. Weber and D. L. Mills, “Symmetry and reflectivity of diffraction gratings at normal incidence,” Phys. Rev. B31, 2510–2513 (1985). [CrossRef]
  10. D. J. Nash, N. P. K. Cotter, E. L. Wood, G. W. Bradberry, and J. R. Sambles, “Examination of the +1, −1 surface plasmon mini-gap on a gold grating,” J. Mod. Opt.42, 243–248 (1995). [CrossRef]
  11. W. L. Barnes, T. W. Preist, S. C. Kitoson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmon on grating,” Phys. Rev. B51, 11164– 11168 (1995). [CrossRef]
  12. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B54, 6227–6244 (1996). [CrossRef]
  13. U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B60, 4992–4999 (1999). [CrossRef]
  14. Z. Zhu and T. G. Brown, “Nonperturbative analysis of cross coupling in corrugated metal films,” J. Opt. Soc. Am. A17, 1798–1806 (2000). [CrossRef]
  15. I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B67, 235404 (2003). [CrossRef]
  16. I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B70, 045421 (2004). [CrossRef]
  17. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B77, 115425 (2008). [CrossRef]
  18. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons,” Opt. Express17, 8294–8301 (2009). [CrossRef] [PubMed]
  19. M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B66, 245408 (2002). [CrossRef]
  20. A. -L. Baudrion, J. -C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B74, 125406 (2006). [CrossRef]
  21. R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun.100, 1–5 (1993). [CrossRef]
  22. E. Noponen and J. Turunen, “Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles,” J. Opt. Soc. Am. A11, 2494–2502 (1994). [CrossRef]
  23. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A14, 2758–2767 (1997). [CrossRef]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  25. M. Plihal and A. A. Maradudin, “Photonic band structure of two dimensional systems: The triangular lattice,” Phys. Rev. B44, 8565–8571 (1991). [CrossRef]
  26. K. Sakai, J. Yue, and S. Noda, “Coupled-wave model for triangular-lattice photonic crystal with transverse electric polarization,” Opt. Express16, 6033–6040 (2008). [CrossRef] [PubMed]
  27. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photon. Technol. Lett.8, 1662–1664 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited