OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5204–5212

GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators

Masahiro Nomura  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5204-5212 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1337 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate an optomechanical structure consisting of two parallel GaAs membranes with an air-slot type photonic crystal nanocavity. The optical cavity has a quality factor of 4.8 × 106 at 1.52 μm and an extremely small modal volume of 0.015 of a cubic wavelength for the fundamental mode in a vacuum. The localized electric field near the air/dielectric-object boundary provides a large optomechanical coupling factor of ~990 GHz/nm. The fundamental mechanical mode resonance is 95 MHz and a quality factor is 83,800 at room temperature, nearly seven times higher than that for a similar Si-based structure. This high mechanical quality factor of a GaAs-based structure stems from low thermoelastic loss and leads to more effective optical control of nanomechanical oscillators.

© 2012 OSA

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(140.3945) Lasers and laser optics : Microcavities
(050.5298) Diffraction and gratings : Photonic crystals
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Photonic Crystals

Original Manuscript: December 5, 2011
Revised Manuscript: February 8, 2012
Manuscript Accepted: February 10, 2012
Published: February 16, 2012

Masahiro Nomura, "GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators," Opt. Express 20, 5204-5212 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett.62(4), 403–406 (1989). [CrossRef] [PubMed]
  2. C. N. Cohen-Tannoudji and W. D. Phillips, “New mechanisms for laser cooling,” Phys. Today43(10), 33–40 (1990). [CrossRef]
  3. S. Chu, “Laser manipulation of atoms and particles,” Science253(5022), 861–866 (1991). [CrossRef] [PubMed]
  4. V. Braginsky and A. Manukin, Measurement of Weak Forces in Physics Experiments (Univ. Chicago Press, 1977).
  5. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science321(5893), 1172–1176 (2008). [CrossRef] [PubMed]
  6. D. Van Thourhout and J. Roels, “Optomechanical Device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010). [CrossRef]
  7. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature444(7115), 75–78 (2006). [CrossRef] [PubMed]
  8. C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature432(7020), 1002–1005 (2004). [CrossRef] [PubMed]
  9. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452(7183), 72–75 (2008). [CrossRef] [PubMed]
  10. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature444(7115), 71–74 (2006). [CrossRef] [PubMed]
  11. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5(12), 909–914 (2009). [CrossRef]
  12. Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys.5(7), 489–493 (2009). [CrossRef]
  13. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009). [CrossRef] [PubMed]
  14. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011). [CrossRef] [PubMed]
  15. Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express18(23), 23844–23856 (2010). [CrossRef] [PubMed]
  16. J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot modegap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett.96(5), 051123 (2010). [CrossRef]
  17. A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painer, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett.97(18), 181106 (2010). [CrossRef]
  18. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004). [CrossRef] [PubMed]
  19. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single quantum dot-nanocavity system,” Nat. Phys.6(4), 279–283 (2010). [CrossRef]
  20. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett.105(26), 263903 (2010). [CrossRef] [PubMed]
  21. H. Okamoto, D. Ito, K. Onomitsu, H. Sanada, H. Gotoh, T. Sogawa, and H. Yamaguchi, “Vibration amplification, damping, and self-oscillations in micromechanical resonators induced by optomechanical coupling through carrier excitation,” Phys. Rev. Lett.106(3), 036801 (2011). [CrossRef] [PubMed]
  22. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultra-high-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006). [CrossRef]
  23. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express16(18), 13809–13817 (2008). [CrossRef] [PubMed]
  24. Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express12(17), 3988–3995 (2004). [CrossRef] [PubMed]
  25. H. S. Ee, K. Y. Jeong, M. K. Seo, Y. H. Lee, and H. G. Park, “Ultrasmall square-lattice zero-cell photonic crystal laser,” Appl. Phys. Lett.93(1), 011104 (2008). [CrossRef]
  26. M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity,” Opt. Express18(8), 8144–8150 (2010). [CrossRef] [PubMed]
  27. C. Zener, “Internal Friction in Solids. I. Theory of Internal Friction in Reeds,” Phys. Rev.52(3), 230–235 (1937). [CrossRef]
  28. T. H. Metcalf, B. B. Pate, D. M. Photiadis, and B. H. Houston, “Thermoelastic damping in micromechanical resonators,” Appl. Phys. Lett.95(6), 061903 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited