OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5225–5236

STED with wavelengths closer to the emission maximum

Giuseppe Vicidomini, Gael Moneron, Christian Eggeling, Eva Rittweger, and Stefan W. Hell  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5225-5236 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3208 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In stimulated emission depletion (STED) nanoscopy the wavelength of the STED beam is usually tuned towards the red tail of the emission maximum of the fluorophore. Shifting the STED wavelength closer to the emission peak, i.e. towards the blue region, favorably increases the stimulated emission cross-section. However, this blue-shifting also increases the probability to excite fluorophores that have remained in their ground state, compromising the image contrast. Here we present a method to exploit the higher STED efficiency of blue-shifted STED beams while maintaining the contrast in the image. The method is exemplified by imaging immunolabeled features in mammalian cells with an up to 3-fold increased STED efficiency compared to that encountered in standard STED nanoscopy implementations.

© 2012 OSA

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(350.5730) Other areas of optics : Resolution

ToC Category:

Original Manuscript: January 4, 2012
Revised Manuscript: February 12, 2012
Manuscript Accepted: February 13, 2012
Published: February 16, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Giuseppe Vicidomini, Gael Moneron, Christian Eggeling, Eva Rittweger, and Stefan W. Hell, "STED with wavelengths closer to the emission maximum," Opt. Express 20, 5225-5236 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Abbe, Gesammelte abhandlungen (G. Fischer, Jena, 1904).
  2. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods6(1), 24–32 (2009). [CrossRef] [PubMed]
  3. S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007). [CrossRef] [PubMed]
  4. B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell143(7), 1047–1058 (2010). [CrossRef] [PubMed]
  5. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994). [CrossRef] [PubMed]
  6. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000). [CrossRef] [PubMed]
  7. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science320(5873), 246–249 (2008). [CrossRef] [PubMed]
  8. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009). [CrossRef] [PubMed]
  9. J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy,” Neuron63(4), 429–437 (2009). [CrossRef] [PubMed]
  10. B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Colón-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J.100(12), L63–L65 (2011). [CrossRef] [PubMed]
  11. S. W. Hell and M. Kroug, “Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit,” Appl. Phys. B60(5), 495–497 (1995). [CrossRef]
  12. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103 (2007). [CrossRef] [PubMed]
  13. S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol.21(11), 1347–1355 (2003). [CrossRef] [PubMed]
  14. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A.102(49), 17565–17569 (2005). [CrossRef] [PubMed]
  15. T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N. T. Urban, F. Lavoie-Cardinal, K. I. Willig, C. Eggeling, S. Jakobs, and S. W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature478, 204–208 (2011).
  16. K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods4(11), 915–918 (2007). [CrossRef] [PubMed]
  17. M. Leutenegger, C. Eggeling, and S. W. Hell, “Analytical description of STED microscopy performance,” Opt. Express18(25), 26417–26429 (2010). [CrossRef] [PubMed]
  18. J. R. Moffitt, C. Osseforth, and J. Michaelis, “Time-gating improves the spatial resolution of STED microscopy,” Opt. Express19(5), 4242–4254 (2011). [CrossRef] [PubMed]
  19. G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods8(7), 571–573 (2011). [CrossRef] [PubMed]
  20. O. G. Peterson, J. P. Webb, W. C. McColgin, and J. H. Eberly, “Organic dye laser threshold,” J. Appl. Phys.42(5), 1917–1928 (1971). [CrossRef]
  21. E. Rittweger, B. R. Rankin, V. Westphal, and S. W. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett.442(4-6), 483–487 (2007). [CrossRef]
  22. A. Giske, “CryoSTED microscopy: A new spectroscopic approach for improving the resolution of STED microscopy using low temperature,” PhD-Thesis (Ruperto-Carola University of Heidelberg, Heidelberg, 2007).
  23. S. W. Hell and A. Schoenle, “Nanoscale resolution in far-field fluorescence microscopy,” in Science of microscopy, P. W. Hawkes and J. C. H. Spence, eds. (2007), Chap. 12.
  24. E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett.33(2), 113–115 (2008). [CrossRef] [PubMed]
  25. K. Weber, T. Bibring, and M. Osborn, “Specific visualization of tubulin-containing structures in tissue culture cells by immunofluorescence,” Exp. Cell Res.95(1), 111–120 (1975). [CrossRef] [PubMed]
  26. C. A. Wurm, D. Neumann, R. Schmidt, A. Egner, and S. Jakobs, “Sample preparation for STED microscopy live cell imaging,” D. B. Papkovsky, ed. (Humana Press, 2010), Chap. 11.
  27. T. Staudt, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy with reduced number of state transition cycles,” Opt. Express19(6), 5644–5657 (2011). [CrossRef] [PubMed]
  28. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express16(6), 4154–4162 (2008). [CrossRef] [PubMed]
  29. D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, “Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores,” Nat. Methods8(4), 353–359 (2011). [CrossRef] [PubMed]
  30. J. Hotta, E. Fron, P. Dedecker, K. P. F. Janssen, C. Li, K. Müllen, B. Harke, J. Bückers, S. W. Hell, and J. Hofkens, “Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores,” J. Am. Chem. Soc.132(14), 5021–5023 (2010). [CrossRef] [PubMed]
  31. G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schönle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J.92(8), L67–L69 (2007). [CrossRef] [PubMed]
  32. R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods5(6), 539–544 (2008). [CrossRef] [PubMed]
  33. J. Bückers, D. Wildanger, G. Vicidomini, L. Kastrup, and S. W. Hell, “Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses,” Opt. Express19(4), 3130–3143 (2011). [CrossRef] [PubMed]
  34. P. A. Pellett, X. Sun, T. J. Gould, J. E. Rothman, M.-Q. Xu, I. R. Corrêa, and J. Bewersdorf, “Two-color STED microscopy in living cells,” Biomed. Opt. Express2(8), 2364–2371 (2011). [CrossRef] [PubMed]
  35. J. Tønnesen, F. Nadrigny, K. I. Willig, R. Wedlich-Söldner, and U. V. Nägerl, “Two-color STED microscopy of living synapses using a single laser-beam pair,” Biophys. J.101(10), 2545–2552 (2011). [CrossRef] [PubMed]
  36. G. Vicidomini, R. Schmidt, A. Egner, S. W. Hell, and A. Schönle, “Automatic deconvolution in 4Pi-microscopy with variable phase,” Opt. Express18(10), 10154–10167 (2010). [CrossRef] [PubMed]
  37. M. Yavuz and J. A. Fessler, “Statistical image reconstruction methods for randoms-precorrected PET scans,” Med. Image Anal.2(4), 369–378 (1998). [CrossRef] [PubMed]
  38. M. Bertero, P. Boccacci, G. Desiderà, and G. Vicidomini, “Image deblurring with poisson data: From cells to galaxies,” Inverse Probl.25(12), 123006 (2009). [CrossRef]
  39. G. Vicidomini, P. Boccacci, A. Diaspro, and M. Bertero, “Application of the split-gradient method to 3D image deconvolution in fluorescence microscopy,” J. Microsc.234(1), 47–61 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited