OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5325–5334

Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra

Yong-Le Pan, Steven C. Hill, and Mark Coleman  »View Author Affiliations


Optics Express, Vol. 20, Issue 5, pp. 5325-5334 (2012)
http://dx.doi.org/10.1364/OE.20.005325


View Full Text Article

Enhanced HTML    Acrobat PDF (1154 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new method is demonstrated for optically trapping micron-sized absorbing particles in air and obtaining their single-particle Raman spectra. A 488-nm Gaussian beam from an Argon ion laser is transformed by conical lenses (axicons) and other optics into two counter-propagating hollow beams, which are then focused tightly to form hollow conical beams near the trapping region. The combination of the two coaxial conical beams, with focal points shifted relative to each other along the axis of the beams, generates a low-light-intensity biconical region totally enclosed by the high-intensity light at the surface of the bicone, which is a type of bottle beam. Particles within this region are trapped by the photophoretic forces that push particles toward the low-intensity center of this region. Raman spectra from individual trapped particles made from carbon nanotubes are measured. This trapping technique could lead to the development of an on-line real-time single-particle Raman spectrometer for characterization of absorbing aerosol particles.

© 2012 OSA

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(300.6450) Spectroscopy : Spectroscopy, Raman
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: January 5, 2012
Revised Manuscript: February 7, 2012
Manuscript Accepted: February 8, 2012
Published: February 17, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Yong-Le Pan, Steven C. Hill, and Mark Coleman, "Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra," Opt. Express 20, 5325-5334 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5325


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003). [CrossRef] [PubMed]
  4. R. E. Preston, T. R. Lettieri, and H. G. Semerjian, “Characterization of single leviatated droplets by Raman spectroscopy,” Langmuir1(3), 365–367 (1985). [CrossRef]
  5. R. Thurn and W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt.24(10), 1515–1519 (1985). [CrossRef] [PubMed]
  6. A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A40(12), 7413–7416 (1989). [CrossRef] [PubMed]
  7. J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterization of aerosol,” Chem. Phys. Lett.481(4-6), 153–165 (2009). [CrossRef]
  8. C. Xie and Y. Q. Li, “Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques,” J. Appl. Phys.93(5), 2982–2986 (2003). [CrossRef]
  9. D. Chen, S. S. Huang, and Y. Q. Li, “Real-time detection of kinetic germination and heterogeneity of single Bacillus spores by laser tweezers Raman spectroscopy,” Anal. Chem.78(19), 6936–6941 (2006). [CrossRef] [PubMed]
  10. P. F. Zhang, L. B. Kong, P. Setlow, and Y. Q. Li, “Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells,” Opt. Lett.35(20), 3321–3323 (2010). [CrossRef] [PubMed]
  11. L. B. Kong, P. F. Zhang, G. W. Wang, J. Yu, P. Setlow, and Y. Q. Li, “Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers,” Nat. Protoc.6(5), 625–639 (2011). [CrossRef] [PubMed]
  12. A. E. Carruthers, J. P. Reid, and A. J. Orr-Ewing, “Longitudinal optical trapping and sizing of aerosol droplets,” Opt. Express18(13), 14238–14244 (2010). [CrossRef] [PubMed]
  13. D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express14(9), 4175–4181 (2006). [CrossRef] [PubMed]
  14. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature419(6903), 145–147 (2002). [CrossRef] [PubMed]
  15. B. Shao, S. C. Esener, J. M. Nascimento, M. W. Berns, E. L. Botvinick, and M. Ozkan, “Size tunable three-dimensional annular laser trap based on axicons,” Opt. Lett.31(22), 3375–3377 (2006). [CrossRef] [PubMed]
  16. M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett.40(6), 455–457 (1982). [CrossRef]
  17. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express17(7), 5743–5757 (2009). [CrossRef] [PubMed]
  18. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express17(10), 8201–8211 (2009). [CrossRef] [PubMed]
  19. V. G. Shvedov, C. Hnatovsky, A. V. Rode, and W. Krolikowski, “Robust trapping and manipulation of airborne particles with a bottle beam,” Opt. Express19(18), 17350–17356 (2011). [CrossRef] [PubMed]
  20. P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, “Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques,” Opt. Lett.36(8), 1491–1493 (2011). [CrossRef] [PubMed]
  21. K. S. Kalasinsky, T. Hadfield, A. A. Shea, V. F. Kalasinsky, M. P. Nelson, J. Neiss, A. J. Drauch, G. S. Vanni, and P. J. Treado, “Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation,” Anal. Chem.79(7), 2658–2673 (2007). [CrossRef] [PubMed]
  22. Z. Han and A. Fina, “Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review,” Prog. Polym. Sci.36(7), 914–944 (2011). [CrossRef]
  23. Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res.112(D24), D24S19 (2007). [CrossRef]
  24. J. R. Finke, C. L. Jeffrey, and R. E. Spjut, “Measurement of the emissivity of small particles at elevated temperatures,” Opt. Eng.27, 684–690 (1988).
  25. J. E. Bohn, P. G. Etchegoin, E. C. Le Ru, R. Xiang, S. Chiashi, and S. Maruyama, “Estimating the Raman cross sections of single carbon nanotubes,” ACS Nano4(6), 3466–3470 (2010). [CrossRef] [PubMed]
  26. J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc.41(12), 1632–1637 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited