OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5335–5342

Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting

Stefan Schumacher, Jens Förstner, Artur Zrenner, Matthias Florian, Christopher Gies, Paul Gartner, and Frank Jahnke  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5335-5342 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (734 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the quantum properties and statistics of photons emitted by a quantum-dot biexciton inside a cavity. In the biexciton-exciton cascade, fine-structure splitting between exciton levels degrades polarization-entanglement for the emitted pair of photons. However, here we show that the polarization-entanglement can be preserved in such a system through simultaneous emission of two degenerate photons into cavity modes tuned to half the biexciton energy. Based on detailed theoretical calculations for realistic quantum-dot and cavity parameters, we quantify the degree of achievable entanglement.

© 2012 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5565) Quantum optics : Quantum communications
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Quantum Optics

Original Manuscript: January 13, 2012
Revised Manuscript: February 13, 2012
Manuscript Accepted: February 13, 2012
Published: February 17, 2012

Stefan Schumacher, Jens Förstner, Artur Zrenner, Matthias Florian, Christopher Gies, Paul Gartner, and Frank Jahnke, "Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting," Opt. Express 20, 5335-5342 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Edamatsu, “Entangled photons: generation, observation, and characterization,” Jpn. J. Appl. Phys. 46, 7175–7187 (2007). [CrossRef]
  2. K.-I. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007). [CrossRef]
  3. A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photonics 2, 238–241 (2008). [CrossRef]
  4. S. Strauf, N. G. Stoltz, M. T. Rakher, L. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single photon source with polarization control,” Nat. Photonics 1, 704–708 (2007). [CrossRef]
  5. M. Mehta, D. Reuter, A. D. Wieck, S. Michaelis de Vasconcellos, A. Zrenner, and C. Meier, “An intentionally positioned (In,Ga)As quantum dot in a micron sized light emitting diode,” Appl. Phys. Lett. 97, 143101 (2010). [CrossRef]
  6. J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009). [CrossRef] [PubMed]
  7. S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photon. Rev. 5, 607–633 (2011).
  8. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000). [CrossRef] [PubMed]
  9. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010). [CrossRef] [PubMed]
  10. R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 k,” New J. Phys. 9, 315 (2007). [CrossRef]
  11. F. Troiani, J. I. Perea, and C. Tejedor, “Cavity-assisted generation of entangled photon pairs by a quantum-dot cascade decay,” Phys. Rev. B 74, 235310 (2006). [CrossRef]
  12. A. Carmele, F. Milde, M.-R. Dachner, M. B. Harouni, R. Roknizadeh, M. Richter, and A. Knorr, “Formation dynamics of an entangled photon pair: a temperature-dependent analysis,” Phys. Rev. B 81, 195319 (2010).
  13. A. Carmele and A. Knorr, “Analytical solution of the quantum-state tomography of the biexciton cascade in semiconductor quantum dots: pure dephasing does not affect entanglement,” Phys. Rev. B 84, 075328 (2011). [CrossRef]
  14. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010). [CrossRef]
  15. E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010). [CrossRef]
  16. L. He, M. Gong, C.-F. Li, G.-C. Guo, and A. Zunger, “Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55 – μm photon emitter,” Phys. Rev. Lett. 101, 157405 (2008). [CrossRef] [PubMed]
  17. B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Appl. Phys. Lett. 90, 041101 (2007). [CrossRef]
  18. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006). [CrossRef] [PubMed]
  19. S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006). [CrossRef]
  20. E. del Valle, A. Gonzalez-Tudela, E. Cancellieri, F. P. Laussy, and C. Tejedor, “Generation of a two-photon state from a quantum dot in a microcavity,” New J. Phys. 13, 113014 (2011). [CrossRef]
  21. U. Hohenester, T. Volz, M. Winger, and A. Imamoglu, “Cavity-assisted two-photon decay of biexcitons,” OECS12 Conference Proceedings, page 110 (2011).
  22. Y. Ota, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Spontaneous two-photon emission from a single quantum dot,” Phys. Rev. Lett. 107, 233602 (2011). [CrossRef] [PubMed]
  23. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976). [CrossRef]
  24. A. Laucht, N. Hauke, J. M. Villas-Boas, F. Hofbauer, M. Kaniber, G. Böhm, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett. 103, 087405 (2009). [CrossRef] [PubMed]
  25. G. Pfanner, M. Seliger, and U. Hohenester, “Entangled photon sources based on semiconductor quantum dots: the role of pure dephasing,” Phys. Rev. B 78, 195410 (2008).
  26. H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer, 2002), 2nd ed.
  27. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009). [CrossRef]
  28. T. Flissikowski, A. Betke, I. A. Akimov, and F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92, 227401 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited