OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5356–5367

Color rendition engine

Artūras Žukauskas, Rimantas Vaicekauskas, Pranciškus Vitta, Arūnas Tuzikas, Andrius Petrulis, and Michael Shur  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5356-5367 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1606 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A source of white light with continuously tuned color rendition properties, such as color fidelity, as well as color saturating and color dulling ability has been developed. The source, which is composed of red (R), amber (A), green (G), and blue (B) light-emitting diodes, has a spectral power distribution varied as a weighted sum of “white” RGB and AGB blends. At the RGB and AGB end-points, the source has a highest color saturating and color dulling ability, respectively, as follows from the statistical analysis of the color-shift vectors for 1269 Munsell samples. The variation of the weight parameter allows for continuously traversing all possible metameric RAGB blends, including that with the highest color fidelity. The source was used in a psychophysical experiment on the estimation of the color appearance of familiar objects, such as vegetables, fruits, and soft-drink cans of common brands, at correlated color temperatures of 3000 K, 4500 K, and 6500 K. By continuously tuning the weight parameter, each of 100 subjects selected RAGB blends that, to their opinion, matched lighting characterized as “most saturating,” “most dulling,” “most natural,” and “preferential”. The end-point RGB and AGB blends have been almost unambiguously attributed to “most saturating” and “most dulling” lighting, respectively. RAGB blends that render a highest number of colors with high fidelity have, on average, been attributed to “most natural” lighting. The “preferential” color quality of lighting has, on average, been matched to RAGB blends that provide color rendition with fidelity somewhat reduced in favor of a higher saturation. Our results infer that tunable “color rendition engines” can validate color rendition metrics and provide lighting meeting specific needs and preferences to color quality.

© 2012 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(330.1690) Vision, color, and visual optics : Color
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.1715) Vision, color, and visual optics : Color, rendering and metamerism
(110.2945) Imaging systems : Illumination design

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: November 28, 2011
Revised Manuscript: February 10, 2012
Manuscript Accepted: February 16, 2012
Published: February 21, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Artūras Žukauskas, Rimantas Vaicekauskas, Pranciškus Vitta, Arūnas Tuzikas, Andrius Petrulis, and Michael Shur, "Color rendition engine," Opt. Express 20, 5356-5367 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Commission Internationale de l’Eclairage, “Method of measuring and specifying colour rendering properties of light sources,” Pub. CIE 13.3, (1995).
  2. G. Wyszecki and W. S. Stiles, Color Science. Concepts and Methods, Quantitative Data and Formulae (Wiley, 2000).
  3. N. Sándor and J. Schanda, “Visual color rendering based on color difference evaluations,” Lighting Res. Tech.38(3), 225–239 (2006). [CrossRef]
  4. M. R. Luo, G. Cui, and C. Li, “Uniform color spaces based on CIECAM02 colour appearance model,” Color Res. Appl.31(4), 320–330 (2006). [CrossRef]
  5. C. Li, M. R. Luo, G. Cui, and C. Li, “Evaluation of the CIE colour rendering index,” Color. Technol.127(2), 129–135 (2011). [CrossRef]
  6. D. B. Judd, “A flattery index for artificial illuminants,” Illum. Eng.62, 593–598 (1967).
  7. W. A. Thornton, “Color-discrimination index,” J. Opt. Soc. Am.62(2), 191–194 (1972). [CrossRef] [PubMed]
  8. W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc.4, 48–52 (1974).
  9. S. M. Aston and H. E. Belichambers, “Illumination, color rendering, and visual clarity,” Lighting Res. Tech.1(4), 259–261 (1969). [CrossRef]
  10. K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl.19(3), 171–185 (1994). [CrossRef]
  11. H. Xu, “Color-rendering capacity of illumination,” J. Opt. Soc. Am.73(12), 1709–1713 (1983). [CrossRef] [PubMed]
  12. Y. Nakano, H. Tahara, H. Suehara, J. Kohda, and T. Yano, “Application of multispectral camera to color rendering simulator,” in Proceedings of the 10th Congress of the International Colour Association AIC Colour 05, J. L. Nieves and J. Hernández-Andrés, eds. (AIC, 2005), pp. 1625–1628.
  13. K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based of feeling of contrast,” Color Res. Appl.32(5), 361–371 (2007). [CrossRef]
  14. M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl.33(3), 192–202 (2008). [CrossRef]
  15. M. Shur and A. Žukauskas, “Solid-state lighting: Toward superior illumination,” Proc. IEEE93(10), 1691–1703 (2005). [CrossRef]
  16. N. Narendran and L. Deng, “Color rendering properties of LED sources,” Proc. SPIE4776, 61–67 (2002). [CrossRef]
  17. I. Shakir and N. Narendran, “Evaluating white LEDs for outdoor landscape lighting application,” Proc. SPIE4776, 162–170 (2002). [CrossRef]
  18. Commission Internationale de l’Eclairage, “Colour rendering of white LED sources,” Pub. CIE 177, 2007.
  19. S. Jost-Boissard, M. Fontoynont, and J. Blanc-Gonnet, “Perceived lighting quality of LED sources for the presentation of fruit and vegetables,” J. Mod. Opt.56(13), 1420–1432 (2009). [CrossRef]
  20. S. Boissard and M. Fontoynont, “Optimization of LED-based light blendings for object presentation,” Color Res. Appl.34(4), 310–320 (2009). [CrossRef]
  21. M. S. Rea and J. P. Freyssinier, “Color rendering: Beyond pride and prejudice,” Color Res. Appl.35(6), 401–409 (2010). [CrossRef]
  22. K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Memory colours and colour quality evaluation of conventional and solid-state lamps,” Opt. Express18(25), 26229–26244 (2010). [CrossRef] [PubMed]
  23. K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl.36(3), 192–200 (2011). [CrossRef]
  24. W. Davis and Y. Ohno, “Toward and improved color rendering metrics,” Proc. SPIE5941, 594111 (2005).
  25. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng.49(3), 033602 (2010). [CrossRef]
  26. P. van der Burgt and J. van Kemenade, “About color rendition of light sources: The balance between simplicity and accuracy,” Color Res. Appl.35, 85–93 (2010).
  27. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron.15(6), 1753–1762 (2009). [CrossRef]
  28. A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Color rendition properties of solid-state lamps,” J. Phys. D Appl. Phys.43(35), 354006 (2010). [CrossRef]
  29. W. Davis, J. L. Gardner, and Y. Ohno, “NIST facility for color rendering simulation,” in Proceedings of the 10th Congress of the International Colour Association AIC Colour 05, J. L. ONieves and J. Hernández-Andrés, eds. (AIC, 2005), pp. 519–522.
  30. K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimal colour quality of LED clusters based on memory colours,” Opt. Express19(7), 6903–6912 (2011). [CrossRef] [PubMed]
  31. A. Žukauskas, R. Vaicekauskas, A. Tuzikas, and M. S. Shur, “Solid-state lighting with tailored colour quality,” in Proceedings of the 12th International Symposium on Science and Technology of Light Sources and 3rd International Conference on White LEDs and Solid State Lighting LS-WLED 2010, M. Haverlag, G. M. W. Kroesen, and T. Taguchi, eds. (FAST-LS, 2010), pp. 363–364.
  32. A. Žukauskas and R. Vaicekauskas, “LEDs in lighting with tailored color quality,” Int. J. High Speed Electron. Syst.20(02), 287–301 (2011). [CrossRef]
  33. A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, and M. Shur, “Statistical approach to color rendition properties of solid-state light sources,” Proc. SPIE8123, 81230X, 81230X-9 (2011). [CrossRef]
  34. A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express18(3), 2287–2295 (2010). [CrossRef] [PubMed]
  35. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng.44(11), 111302 (2005). [CrossRef]
  36. V. Viliūnas, H. Vaitkevičius, R. Stanikūnas, A. Švegžda, and Z. Bliznikas, “LED-based metameric light sources: Rendering the colours of objects and other colour quality criteria,” Lighting Res. Tech.43(3), 321–330 (2011). [CrossRef]
  37. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett.93(2), 021109 (2008). [CrossRef]
  38. W. A. Thornton, “Luminosity and color-rendering capability of white light,” J. Opt. Soc. Am.61(9), 1155–1163 (1971). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited