OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5392–5401

Azimuthally polarized laser mode generation by multilayer mirror with wideband grating-induced TM leakage in the TE stopband

Thomas Kämpfe, Svetlen Tonchev, Alexandre V. Tishchenko, Deyan Gergov, and Olivier Parriaux  »View Author Affiliations


Optics Express, Vol. 20, Issue 5, pp. 5392-5401 (2012)
http://dx.doi.org/10.1364/OE.20.005392


View Full Text Article

Enhanced HTML    Acrobat PDF (1008 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new intracavity laser polarization-mode selection scheme relying upon a TE/TM diffractive dichroism principle in a grating multilayer mirror is proposed and demonstrated. The grating diffracts the first orders between the TE and TM band edges of the angular spectra of the laser mirror inducing a leakage of the TM polarization into the mirror substrate through the multilayer stack whereas TE diffraction into the substrate is forbidden. This mechanism is non-resonant, thus relatively wide-band. Applied with a circular-line grating in the 1.0µm - 1.1µm wavelength range, this mirror filters out the radially polarization mode and causes the emission of the azimuthally polarized mode. An original amorphous silicon grating technology was developed and the optical function demonstrated in a Nd:YAG laser.

© 2012 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.4170) Optical devices : Multilayers
(230.5440) Optical devices : Polarization-selective devices
(310.4165) Thin films : Multilayer design
(310.5448) Thin films : Polarization, other optical properties
(310.6188) Thin films : Spectral properties

ToC Category:
Diffraction and Gratings

History
Original Manuscript: December 13, 2011
Revised Manuscript: January 25, 2012
Manuscript Accepted: January 26, 2012
Published: February 21, 2012

Citation
Thomas Kämpfe, Svetlen Tonchev, Alexandre V. Tishchenko, Deyan Gergov, and Olivier Parriaux, "Azimuthally polarized laser mode generation by multilayer mirror with wideband grating-induced TM leakage in the TE stopband," Opt. Express 20, 5392-5401 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5392


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys.32(13), 1455–1461 (1999). [CrossRef]
  2. P. Muys and M. Youn, “Mathematical modeling of laser sublimation cutting,” Laser Phys.18(4), 495–499 (2008). [CrossRef]
  3. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003). [CrossRef] [PubMed]
  4. D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett.28(11), 923–925 (2003). [CrossRef] [PubMed]
  5. R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A14(7), 1627–1636 (1997). [CrossRef]
  6. T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron.34(1/3), 63–70 (2002). [CrossRef]
  7. J. L. Li, K. Ueda, L. X. Zhong, M. Musha, A. Shirakawa, and T. Sato, “Efficient excitations of radially and azimuthally polarized Nd3+:YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2.,” Opt. Express16(14), 10841–10848 (2008). [CrossRef] [PubMed]
  8. T. Moser, J. Balmer, D. Delbeke, P. Muys, S. Verstuyft, and R. Baets, “Intracavity generation of radially polarized CO2 laser beams based on a simple binary dielectric diffraction grating,” Appl. Opt.45(33), 8517–8522 (2006). [CrossRef] [PubMed]
  9. C. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol.26(1), 014043 (2011). [CrossRef]
  10. F. Pigeon, O. Parriaux, Y. Ouerdane, and A. Tishchenko, “Polarizing grating mirror for CW Nd: YAG microchip lasers,” IEEE Photon. Technol. Lett.12(6), 648–650 (2000). [CrossRef]
  11. J. Bisson, O. Parriaux, F. Pigeon, A. Tishchenko, N. Lyndin, and K. Ueda, “1-nm line-width, flux-resistant laser mirror using a resonant grating,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, New York, 2005), 433–434 (2005).
  12. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett.32(22), 3272–3274 (2007). [CrossRef] [PubMed]
  13. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express18(21), 22305–22313 (2010). [CrossRef] [PubMed]
  14. J. Lekner, “Light in periodically stratified media,” J. Opt. Soc. Am. A11(11), 2892–2899 (1994). [CrossRef]
  15. N. Lyndin , “MC Grating,” http://www.mcgrating.com .
  16. A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited